Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen bietet neue Funktionen für elektronische Nanogeräte

12.06.2017

Ein internationales Team unter der Leitung der Universität Bern und des National Physical Laboratory (NPL, UK) eröffnet der nächsten Generation von nanoelektronischen Geräten neue Wege: Der «Wunderstoff» Graphen macht Innovationen auf verschiedensten Gebieten wie der Umwandlung und Speicherung von Energie oder flexiblen Touchscreens möglich. So können noch kleinere und effizientere Geräte entwickelt werden.

Der Forschungsbereich der molekularen Nanoelektronik zielt darauf ab, einzelne Moleküle als «Bausteine» für elektronische Geräte zu nutzen, deren Funktionen zu verbessern und die Entwicklung möglichst kleiner und dennoch kontrollierbarer Geräte zu ermöglichen.


Die stabile Verbindung von Molekülen und Graphen öffnet der nächsten Generation von elektronischen Nanogeräten neue Wege.

© Alexander Rudnev, Universiät Bern

Das Haupthindernis, das bisher konkrete Fortschritte erschwerte, bestand in der fehlenden stabilen Verbindung zwischen den Molekülen und den verwendeten Metallen bei Raumtemperatur. Graphen, das oft als «Wundermittel» bezeichnet wird, besitzt nicht nur eine hervorragende mechanische Stabilität, sondern auch eine ausserordentlich hohe elektronische und thermische Leitfähigkeit, womit das zweidimensionale Material für eine Vielzahl möglicher Anwendungen in molekularer Elektronik attraktiv ist.

Ein Forschungsteam der Universität Bern, des National Physical Laboratory (NPL) und der University of the Basque Country (UPV/EHU, Spanien), unterstützt von Forschenden der Chuo University (Japan), hat es nun einen Durchbruch geschafft: Sie konnten eine auch bei Raumtemperatur stabile Verbindung zwischen Graphen und einzelnen Molekülen demonstrieren.

Dies war mit den bisher standardmässig verwendeten Metallen nicht möglich und stellt daher einen wichtigen Schritt im Hinblick auf die Entwicklung von graphenbasierten elektronischen Geräten dar. Die Resultate wurden nun im Journal Science Advances publiziert.

Einzelne Moleküle verbinden

Die Anlagerung spezifischer Moleküle auf graphenbasierten elektronischen Geräten erlaubt es, die Gerätefunktionen anzupassen, hauptsächlich indem der elektrische Widerstand verändert wird. Einen Zusammenhang zwischen allgemeinen Geräteigenschaften und den Eigenschaften einzelner angelagerter Moleküle herzustellen, ist jedoch schwierig. Dies kommt daher, dass der elektrische Widerstand an der Graphenoberfläche nicht überall gleich gross ist und der Durchschnittswert diese Unterschiede nicht wiedergibt.

Dr. Alexander Rudnev and Dr. Veerabhadrarao Kaliginedi vom Departement für Chemie und Biochemie der Universität Bern massen daher den elektrischen Strom, der durch einzelne angelagerte Moleküle floss. Sie verwendeten dazu eine einzigartige, sogenannte rauscharme Technik, die es ihnen erlaubte, von Molekül zu Molekül separate Werte zu messen. Ausgehend von den theoretischen Berechnungen von Dr. Ivan Rungger (NPL) and Dr. Andrea Droghetti (UPV/EHU), konnten sie so zeigen, dass der chemische Kontakt eines Moleküls zur Graphen-Schicht die Funktionsweise von solchen elektronischen Geräten vorgibt.

Markanter Umbruch erwartet

«Unsere Einzel-Molekül-Dioden zeigen, dass die Vorzugsrichtung von elektrischem Strom tatsächlich geändert werden kann, indem man den chemischen Kontakt der einzelnen Moleküle verändert», sagt Alexander Rudnev. «Mit der sorgfältigen Herstellung der jeweiligen chemischen Verbindungen von Molekülen und graphenbasierten Materialien können wir die Funktionalität der Nano-Elektrogeräte steuern», ergänzt Ivan Rungger.

«Unsere Resultate stellen einen grossen Fortschritt für die praktische Anwendung von elektronischen Nanogeräten dar. Wir erwarten, dass unsere Technik des stabilen chemischen Kontakts einen markanten Umbruch im Forschungsbereich auslösen wird», fasst Veerabhadrarao Kaliginedi zusammen. Die Ergebnisse zu den Graphen-Molekül-Schnittstellen sollen Forschenden auch bei der Arbeit mit Energieumwandlung helfen, und allgemein die Effizienz von elektronischen Nanogeräten steigern.

Publikationsangaben:
Alexander V. Rudnev, Veerabhadrarao Kaliginedi, Andrea Droghetti, Hiroaki Ozawa, Akiyoshi Kuzume, Masa-aki Haga, Peter Broekmann, Ivan Rungger: Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts, Science Advances, 9. Juni 2017, in press.

Kontakt:
Dr. Alexander Rudnev
Departement für Chemie und Biochemie, Universität Bern
Tel: +41 31 631 42 54
Email: alexander.rudnev@dcb.unibe.ch

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics