Graphen mit Aroma

Auf dem Titelbild der Zeitschrift Advanced Materials ist die Umwandlung der Monolage des komplexen Moleküls Biphenylthiol in den zweidimensionalen Graphenkristall durch Elektronenbestrahlung und thermische Behandlung schematisch dargestellt.<br><br>(Abb.: Advanced Materials 25 (2013). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)<br>

Graphen, ein Kristall aus nur einer Lage von Kohlenstoffatomen, die im regelmäßigen Sechseck angeordnet sind, gilt als ein Material, dem vor allem in den Bereichen Elektronik, Sensorik und Displaytechnologie, aber auch in der Metrologie Wunderdinge zugetraut werden.

Bereits vier Jahre nach der erstmaligen erfolgreichen Präparation von Graphen wurden seine Entdecker Geim und Novoselov daher mit dem Nobelpreis ausgezeichnet. Da die ursprüngliche Präparationsmethode durch Abschälen einzelner Atomlagen aus Graphit aber keine gute Perspektive für die breite technologische Nutzung bietet, konzentrieren sich viele Forschungsgruppen sehr stark auf die Entwicklung alternativer Herstellungsverfahren. Eine völlig neue und sehr flexible Variante wurde nun von der Gruppe von Andrey Turchanin von der Universität Bielefeld in Zusammenarbeit mit der Universität Ulm und drei Fachbereichen der Physikalisch-Technischen Bundesanstalt (PTB) entwickelt und in der Zeitschrift Advanced Materials veröffentlicht.

Im Unterschied zu üblichen Methoden, bei denen das Graphen z. B. durch Abscheiden von Kohlenstoffatomen aus der Gasphase oder durch thermische Graphitierung von Siliciumcarbid hergestellt wird, wählten die Wissenschaftler in dieser Arbeit aromatische Moleküle als Ausgangspunkt. Als Substrate kamen dabei sowohl Kupfer-Einkristalle als auch preiswerte polykristalline Kupferfolien zum Einsatz. Durch Bestrahlung mit niederenergetischen Elektronen und nachfolgendes thermisches Ausheilen gelang es dann, eine auf der Kupferoberfläche abgeschiedene selbst-organisierte Einzellage des Moleküls Biphenylthiol in Graphen umzuwandeln.

Für die Untersuchung der chemischen und physikalischen Eigenschaften des so erzeugten Graphens kamen verschiedene Charakterisierungsmethoden der Universitäten Ulm und Bielefeld sowie der PTB zum Einsatz, nämlich die Raster-Tunnelmikroskopie, die Transmissionselektronenmikroskopie, die Ramanspektroskopie sowie elektrische Transportmessungen bei tiefen Temperaturen und hohen Magnetfeldern. All diese Messungen bestätigten, dass aus dem aromatischen Molekül wirklich Graphen von hervorragender kristalliner und elektronischer Qualität entstanden war.

Durch die Flexibilität der Elektronenbestrahlung, die sowohl großflächig als auch mit hervorragender Ortsauflösung an kleinen wohldefinierten Stellen möglich ist, lassen sich nun Graphenstrukturen mit prinzipiell beliebiger Form erzeugen, z. B. Quantenpunkte, Nanostreifen oder andere Nano-Geometrien mit spezifischer Funktionalität. Durch die Wahl der Temperatur beim thermischen Umwandlungsschritt können auch der Grad der Kristallinität und die davon abhängenden Eigenschaften des Graphens eingestellt werden.

Weitere Vorteile entstehen durch die Vielseitigkeit der Methode der selbst-organisierten Beschichtung. Man kann sie mit unterschiedlichen aromatischen Molekülen durchführen, die z. B. auch Dotieratome zur elektronischen Dotierung des Endprodukts enthalten könnten. In Mehrfachlagen aufgebracht, könnte man sogenannte Bilagen- oder Multilagen-Graphene erzeugen, deren geänderte elektronische Bandstruktur die Anwendungsmöglichkeiten von Einzellagen-Graphen erweitert. Ebenso könnten andere Substrate als das hier verwendete Kupfer (etwa andere Metalle, Halbleiter, Isolatoren) genutzt werden. Darüber hinaus sollte auch die Erzeugung von Graphen auf beliebigen 3D-Oberflächen möglich sein, da molekulare Selbstorganisation auch auf gekrümmten Flächen stattfindet. Die neue Herstellungsmethode erweitert die Perspektiven zur besseren Nutzung des ‚Wundermaterials‘ auf so eindrucksvolle Art, dass die entsprechende Veröffentlichung auf dem Umschlagsblatt in der Augustausgabe der Zeitschrift Advanced Materials hervorgehoben wurde.

(es/ptb)

Ansprechpartner:
Franz Josef Ahlers, PTB-Fachbereich 2.6 Elektrische Quantenmetrologie, Telefon (0531) 592-2600,

E-Mail: franz.ahlers@ptb.de

PD Dr. Andrey Turchanin, Universität Bielefeld, Fakultät für Physik, Physik supramolekularer Systeme und Oberflächen, Bielefeld Insitute for Biophysics and Nanoscience (BINAS), Universitätsstr. 25, 33615 Bielefeld, Telefon: (0521) 106-5376, E-Mail: turchanin@physik.uni-bielefeld.de

Die Originalveröffentlichung:
D. G. Matei, N.-E. Weber, S. Kurasch, S. Wundrack, M. Woszczyna, M. Grothe, T. Weimann, F.-J. Ahlers, R. Stosch, U. Kaiser, A. Turchanin: Functional single-layer graphene sheets from aromatic monolayers. Advanced Materials, 25 (2013), 30, 4146-4151,

dx.doi.org/10.1002/adma.201300651 [article], dx.doi.org/10.1002/adma.201370195 [frontispiece]; Wiley-VCH. ISSN 1521-4095

Media Contact

Erika Schow PTB

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer