Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldpyramiden machen Kohlenmonoxid-Spuren in der Luft erkennbar

15.07.2013
Bayreuther Chemiker entwickeln neuartiges Material für die oberflächenverstärkte Raman-Spektroskopie

Ein handliches und preisgünstiges Spektrometer kann in Verbindung mit einer nanostrukturierten Oberfläche feinste Spuren von Kohlenmonoxid in der Atmosphäre entdecken. Über diese Entwicklung berichtet ein internationales Team mit Dr. Nicolas Pazos Peréz und Prof. Dr. Andreas Fery an der Universität Bayreuth in der Zeitschrift „Angewandte Chemie“.


Rechts: Rasterelektronenmikroskopische Aufnahme
der Gold-Nanopyramiden.
Links: (1) oben links: Einzelne Gold-Nanopartikel
in einer transmissionselektronenmikroskopischen
Aufnahme; (2) daneben rechts: Foto eines handlichen
SERS-Sensors, bestehend aus einer quadratzentimeter-
großen Fläche, auf der die beschichteten Gold-
Nanopyramiden angeordnet sind; (3) Mitte:
Rasterelektronenmikroskopische Aufnahme einer
Pyramide; (4) unten: Nahaufnahme der kugelartigen
Nanopartikel an einer Kante der Pyramide.

1 Nanometer entspricht 1 Millardstel Meter,
1 Mikrometer entspricht 1 Millionstel Meter.

Grafik: Dr. Nicolas Pazos-Peréz;
mit Autorangabe zur Veröffentlichung frei.

Der Forschergruppe ist es gelungen, die Leistungsfähigkeit der oberflächenverstärkten Raman-Streuung in einer bisher unerreichten Weise zu steigern. Das Geheimnis dieses Effekts sind Pyramiden aus Gold-Nanopartikeln, die auf einer metallischen Oberfläche angeordnet sind und hier ein regelmäßiges Muster unterschiedlicher Feldstärken erzeugen.

Pyramiden aus Gold-Nanopartikeln ermöglichen hochpräzise Einblicke in molekulare Strukturen

Wenn es darum geht, die Strukturen und Eigenschaften von Materialien aufzuklären, können spektroskopische Untersuchungen mithilfe der oberflächenverstärkten Raman-Streuung (Surface Enhanced Raman Scattering, kurz: SERS) hochpräzise Ergebnisse liefern. Elektromagnetische Felder, die an den Oberflächen metallischer Partikel auftreten, werden dabei so verstärkt, dass die Streuung einfallender Lichtstrahlen Einblicke in den chemischen Aufbau einzelner Moleküle bieten.

Auf der Suche nach Wegen, dieses Verfahren noch leistungsfähiger zu machen, hat die Forschergruppe, in der die Bayreuther Chemiker mit Wissenschaftlern spanischer Universitäten und Forschungseinrichtungen zusammengearbeitet haben, ein ungewöhnliches filmartiges Material hergestellt. Darauf befinden sich winzige Pyramiden, die regelmäßig – wie bei einem karierten Muster – angeordnet sind. Jede Pyramide besteht dabei aus einer Vielzahl kugelförmiger Gold-Nanopartikel, hat Seitenlängen von 4,4 Mikrometern und ist 3,0 Mikrometer hoch. Die seitlichen Abstände zu den benachbarten Pyramiden betragen jeweils nur wenige Mikrometer.

Wie verteilen sich die elektromagnetischen Felder, die durch die Wechselwirkungen der Gold-Nanopartikel entstehen, auf der Oberfläche des Materials? Um dies herauszufinden, wurden die Pyramiden und die Zwischenräume mit 1-naphthalenethiol, einer aromatischen Verbindung, beschichtet. Das Ergebnis der spektroskopischen Untersuchung: Die Feldstärken sind auf den Seitenflächen der Pyramiden deutlich höher als zwischen den Pyramiden; die höchsten Feldstärken konzentrieren sich auf den Pyramidenspitzen. Die Oberfläche des Materials ist also gekennzeichnet durch eine regelmäßige Anordnung sehr verschiedener Feldstärken auf kleinstem Raum.

Diese Verteilung der Feldstärken ist eine hervorragende Voraussetzung, um den chemischen Aufbau einzelner Moleküle mithilfe von SERS sichtbar zu machen. Dazu müssen die Moleküle in den schmalen Räumen zwischen den Pyramiden eingelagert werden. „Die neue Oberfläche, die wir hier in Bayreuth entwickelt haben, ist ein vielversprechendes Substrat, um hochpräzise Informationen über die Strukturen einzelner Moleküle zu gewinnen“, erklärt Dr. Nicolas Pazos Peréz. „Auf diese Weise werden wir die Leistungsfähigkeit von SERS weiter steigern können, nachdem wir im vorigen Jahr nachgewiesen haben, welche grundsätzlichen Vorteile es mit sich bringt, wenn man spezielle Anordnungen von Gold-Nanopartikeln verwendet.“

Transportable SERS-Spektrometer können geringste Kohlenmonoxid-Anteile in der Luft aufspüren – und möglicherweise auch weitere Giftstoffe

Ausgehend von diesem Erfolg haben die spanischen Kooperationspartner getestet, ob sich die neuen Oberflächen dafür eignen, Kohlenmonoxid (CO) in der umgebenden Luft aufzuspüren. Dafür wurden die Gold-Nanopyramiden mit einer Schicht aus Eisen-Porphyrin überzogen. Die Moleküle dieser Schicht sind in der Lage, CO-Moleküle in unmittelbarer Nähe der Pyramiden-Oberflächen zu binden. Dadurch bilden die Oberflächen der regelmäßig angeordneten, beschichteten Pyramiden einen Sensor. In Kombination mit einem kleinen und leicht zu transportierenden SERS-Spektrometer kann ein solcher Sensor genutzt werden, um geringe CO-Konzentrationen in der umgebenden Luft aufzuspüren. Selbst CO-Konzentrationen von weniger als 40 ppm – also von weniger als 0,004 Prozent – werden entdeckt. Derart geringe Mengen lösen beim Menschen zwar keine Krankheitssymptome aus, schädigen auf Dauer aber dennoch den Organismus.

Ein kleines SERS-Spektrometer, in Verbindung mit den Oberflächen aus Gold-Nanopyramiden, kann daher ein wertvoller Beitrag zum Gesundheitsschutz sein – beispielsweise im Straßenbau oder auch in Wohnungen mit Verbrennungsöfen. „Es ist gut möglich, dass mit einem solchen Spektrometer und mit geeigneten Beschichtungen der Gold-Nanopyramiden auch noch andere Giftgasspuren in der Luft entdeckt werden können“, meint Dr. Nicolas Pazos Peréz. Nicht zuletzt im Hinblick auf solche Anwendungsperspektiven hat die Zeitschrift „Angewandte Chemie International Edition“ den Forschungsbeitrag des Bayreuther Teams und seiner Partner in Spanien als „Hot Paper“ ausgezeichnet.

Hintergrund:

An der internationalen Forschungsgruppe, die diesen Beitrag veröffentlicht hat, waren –

zusammen mit Prof. Dr. Andreas Fery, Dr. Nicolas Pazos-Peréz und Moritz Tebbe M.Sc. am Lehrstuhl Physikalische Chemie II der Universität Bayreuth – Wissenschaftler der folgenden spanischen Einrichtungen beteiligt: Universitat Rovira i Virgili, Tarragona; Universidad de Vigo; ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona.

Veröffentlichung:

Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA, Granero P, Ferré-Borrull J, Alvarez R, Pallares J, Fery A, de Lera AR, Marsal LF, Alvarez-Puebla RA,
Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering
in: Angewandte Chemie International Edition, 2013 Jun 17;52(25):6459-63.
DOI: 10.1002/anie.201302285
Ansprechpartner:
Prof. Dr. Andreas Fery
Dr. Nicolas Pazos Peréz
Lehrstuhl für Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0) 921 55-2751
E-Mail: andreas.fery@uni-bayreuth.de / nicolas.pazos@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2013/203-Goldpyramiden-Sensoren.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie