Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldpyramiden machen Kohlenmonoxid-Spuren in der Luft erkennbar

15.07.2013
Bayreuther Chemiker entwickeln neuartiges Material für die oberflächenverstärkte Raman-Spektroskopie

Ein handliches und preisgünstiges Spektrometer kann in Verbindung mit einer nanostrukturierten Oberfläche feinste Spuren von Kohlenmonoxid in der Atmosphäre entdecken. Über diese Entwicklung berichtet ein internationales Team mit Dr. Nicolas Pazos Peréz und Prof. Dr. Andreas Fery an der Universität Bayreuth in der Zeitschrift „Angewandte Chemie“.


Rechts: Rasterelektronenmikroskopische Aufnahme
der Gold-Nanopyramiden.
Links: (1) oben links: Einzelne Gold-Nanopartikel
in einer transmissionselektronenmikroskopischen
Aufnahme; (2) daneben rechts: Foto eines handlichen
SERS-Sensors, bestehend aus einer quadratzentimeter-
großen Fläche, auf der die beschichteten Gold-
Nanopyramiden angeordnet sind; (3) Mitte:
Rasterelektronenmikroskopische Aufnahme einer
Pyramide; (4) unten: Nahaufnahme der kugelartigen
Nanopartikel an einer Kante der Pyramide.

1 Nanometer entspricht 1 Millardstel Meter,
1 Mikrometer entspricht 1 Millionstel Meter.

Grafik: Dr. Nicolas Pazos-Peréz;
mit Autorangabe zur Veröffentlichung frei.

Der Forschergruppe ist es gelungen, die Leistungsfähigkeit der oberflächenverstärkten Raman-Streuung in einer bisher unerreichten Weise zu steigern. Das Geheimnis dieses Effekts sind Pyramiden aus Gold-Nanopartikeln, die auf einer metallischen Oberfläche angeordnet sind und hier ein regelmäßiges Muster unterschiedlicher Feldstärken erzeugen.

Pyramiden aus Gold-Nanopartikeln ermöglichen hochpräzise Einblicke in molekulare Strukturen

Wenn es darum geht, die Strukturen und Eigenschaften von Materialien aufzuklären, können spektroskopische Untersuchungen mithilfe der oberflächenverstärkten Raman-Streuung (Surface Enhanced Raman Scattering, kurz: SERS) hochpräzise Ergebnisse liefern. Elektromagnetische Felder, die an den Oberflächen metallischer Partikel auftreten, werden dabei so verstärkt, dass die Streuung einfallender Lichtstrahlen Einblicke in den chemischen Aufbau einzelner Moleküle bieten.

Auf der Suche nach Wegen, dieses Verfahren noch leistungsfähiger zu machen, hat die Forschergruppe, in der die Bayreuther Chemiker mit Wissenschaftlern spanischer Universitäten und Forschungseinrichtungen zusammengearbeitet haben, ein ungewöhnliches filmartiges Material hergestellt. Darauf befinden sich winzige Pyramiden, die regelmäßig – wie bei einem karierten Muster – angeordnet sind. Jede Pyramide besteht dabei aus einer Vielzahl kugelförmiger Gold-Nanopartikel, hat Seitenlängen von 4,4 Mikrometern und ist 3,0 Mikrometer hoch. Die seitlichen Abstände zu den benachbarten Pyramiden betragen jeweils nur wenige Mikrometer.

Wie verteilen sich die elektromagnetischen Felder, die durch die Wechselwirkungen der Gold-Nanopartikel entstehen, auf der Oberfläche des Materials? Um dies herauszufinden, wurden die Pyramiden und die Zwischenräume mit 1-naphthalenethiol, einer aromatischen Verbindung, beschichtet. Das Ergebnis der spektroskopischen Untersuchung: Die Feldstärken sind auf den Seitenflächen der Pyramiden deutlich höher als zwischen den Pyramiden; die höchsten Feldstärken konzentrieren sich auf den Pyramidenspitzen. Die Oberfläche des Materials ist also gekennzeichnet durch eine regelmäßige Anordnung sehr verschiedener Feldstärken auf kleinstem Raum.

Diese Verteilung der Feldstärken ist eine hervorragende Voraussetzung, um den chemischen Aufbau einzelner Moleküle mithilfe von SERS sichtbar zu machen. Dazu müssen die Moleküle in den schmalen Räumen zwischen den Pyramiden eingelagert werden. „Die neue Oberfläche, die wir hier in Bayreuth entwickelt haben, ist ein vielversprechendes Substrat, um hochpräzise Informationen über die Strukturen einzelner Moleküle zu gewinnen“, erklärt Dr. Nicolas Pazos Peréz. „Auf diese Weise werden wir die Leistungsfähigkeit von SERS weiter steigern können, nachdem wir im vorigen Jahr nachgewiesen haben, welche grundsätzlichen Vorteile es mit sich bringt, wenn man spezielle Anordnungen von Gold-Nanopartikeln verwendet.“

Transportable SERS-Spektrometer können geringste Kohlenmonoxid-Anteile in der Luft aufspüren – und möglicherweise auch weitere Giftstoffe

Ausgehend von diesem Erfolg haben die spanischen Kooperationspartner getestet, ob sich die neuen Oberflächen dafür eignen, Kohlenmonoxid (CO) in der umgebenden Luft aufzuspüren. Dafür wurden die Gold-Nanopyramiden mit einer Schicht aus Eisen-Porphyrin überzogen. Die Moleküle dieser Schicht sind in der Lage, CO-Moleküle in unmittelbarer Nähe der Pyramiden-Oberflächen zu binden. Dadurch bilden die Oberflächen der regelmäßig angeordneten, beschichteten Pyramiden einen Sensor. In Kombination mit einem kleinen und leicht zu transportierenden SERS-Spektrometer kann ein solcher Sensor genutzt werden, um geringe CO-Konzentrationen in der umgebenden Luft aufzuspüren. Selbst CO-Konzentrationen von weniger als 40 ppm – also von weniger als 0,004 Prozent – werden entdeckt. Derart geringe Mengen lösen beim Menschen zwar keine Krankheitssymptome aus, schädigen auf Dauer aber dennoch den Organismus.

Ein kleines SERS-Spektrometer, in Verbindung mit den Oberflächen aus Gold-Nanopyramiden, kann daher ein wertvoller Beitrag zum Gesundheitsschutz sein – beispielsweise im Straßenbau oder auch in Wohnungen mit Verbrennungsöfen. „Es ist gut möglich, dass mit einem solchen Spektrometer und mit geeigneten Beschichtungen der Gold-Nanopyramiden auch noch andere Giftgasspuren in der Luft entdeckt werden können“, meint Dr. Nicolas Pazos Peréz. Nicht zuletzt im Hinblick auf solche Anwendungsperspektiven hat die Zeitschrift „Angewandte Chemie International Edition“ den Forschungsbeitrag des Bayreuther Teams und seiner Partner in Spanien als „Hot Paper“ ausgezeichnet.

Hintergrund:

An der internationalen Forschungsgruppe, die diesen Beitrag veröffentlicht hat, waren –

zusammen mit Prof. Dr. Andreas Fery, Dr. Nicolas Pazos-Peréz und Moritz Tebbe M.Sc. am Lehrstuhl Physikalische Chemie II der Universität Bayreuth – Wissenschaftler der folgenden spanischen Einrichtungen beteiligt: Universitat Rovira i Virgili, Tarragona; Universidad de Vigo; ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona.

Veröffentlichung:

Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA, Granero P, Ferré-Borrull J, Alvarez R, Pallares J, Fery A, de Lera AR, Marsal LF, Alvarez-Puebla RA,
Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering
in: Angewandte Chemie International Edition, 2013 Jun 17;52(25):6459-63.
DOI: 10.1002/anie.201302285
Ansprechpartner:
Prof. Dr. Andreas Fery
Dr. Nicolas Pazos Peréz
Lehrstuhl für Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0) 921 55-2751
E-Mail: andreas.fery@uni-bayreuth.de / nicolas.pazos@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2013/203-Goldpyramiden-Sensoren.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie