Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gold-Nanopartikel machen den Ursprung des Wachstums von Krebszellen in ganzen Zellen sichtbar

29.10.2013
Während sich gesunde Zellen durch Teilung und Absterben erneuern, verläuft die Zellteilung bei Krebszellen ungehemmt, weil ihr natürlicher Zelltod außer Kraft gesetzt ist.

Dies geschieht, weil sich zu viele Rezeptoren für den Wachstumsfaktor EGF, die sich auf der Zelloberfläche befinden, zu Pärchen koppeln. Diese Pärchen starten eine Signalkette in die Zelle hinein, an deren Ende das ungebremste Wachstum steht.


Die Markierung mit Gold-Nanopartikeln macht die Paarbildung des Rezeptors für EGF sichtbar.
Grafik: INM

Nun gelang es Wissenschaftlern am INM–Leibniz-Institut für Neue Materialien erstmals, diese Paarbildung in menschlichen Krebszellen an einzelnen Rezeptoren durch Gold-Nanopartikel sichtbar zu machen. Die Ergebnisse wurde vor Kurzem im Online-Journal Scientific Reports veröffentlicht.

„Der Mechanismus der Paarbildung konnte noch nie auf der Ebene der einzelnen Rezeptoren und in ganzen Zellen sichtbar gemacht werden“, erklärt Diana Peckys, Humanbiologin am INM. „Bisher wurden dazu biochemische Methoden verwendet, bei denen man zum Einen die Zellen im Prinzip zerstört und zum anderen immer nur berechnete Mittelwerte aus der Beobachtung vieler Rezeptoren erhält“, erklärt Peckys, „wir untersuchten nun die Anordnungen einzelner Rezeptoren in Pärchen- und in kleineren Gruppen. Dies war möglich weil es uns gelang, die einzelnen Rezeptoren auf der funktionsfähigen Zelle im Elektronenmikroskop sichtbar zu machen.“

Dazu markierten die Forscher den Wachstumsfaktor EGF mit Gold-Nanopartikeln mit einem Durchmesser von etwa zehn Nanometern. Gleichzeitig arbeiteten sie mit einer besonderen Mess- und Präparationstechnik, die es ermöglicht, ganze Zellen in ihrem natürlichen, flüssigen Zustand im Rasterelektronenmikroskop im Nanometerbereich zu untersuchen. Mit diesen kombinierten Methoden bildeten sie mit einer Auflösung von drei Nanometern erstmals eins zu eins ab, dass EGF an den Rezeptor bindet und in welchem Abstand die Rezeptoren bei der Paarbildung zueinander stehen.

Neben dem experimentellen Beweis bisheriger theoretischer Berechnungen arbeitet das Team aus dem Programmbereich Innovative Elektronenmikroskopie nun verstärkt mit deutschen Krebsforschern zusammen. „Wir wollen mit unserer neuen Messmethode zukünftig vor allem untersuchen, wie verschiedene Krebsmedikamente die Paar- und Gruppenbildung der EGFR und ähnlicher, verwandter Rezeptoren beeinflussen. Die Beobachtung solcher Prozesse auf der Einzelmolekülebene eröffnet hier neue Perspektiven für die Krebsforschung“, fasst die Elektronenmikroskopikerin zusammen.

Hintergrund
Auf allen Zellen des Säugetierorganismus befinden sich Rezeptoren für den epidermalen Wachstumsfaktor (EGFR). Wenn sich der dazugehörige Wachstumsfaktor (EGF, epidermal growth factor) an den Rezeptor EGFR koppelt, verändert der Rezeptor seine Form so, dass er sich mit einem zweiten Rezeptor zusammenlagern kann, an welchem dann leicht auch ein Wachstumsfaktor binden kann. Ein solches aktiviertes Rezeptor-Pärchen veranlasst durch eine komplizierte Signalkette das Zellwachstum, das in gesunden Zellen eine normale Zellerneuerung bewirkt. Wenn allerdings zu viele dieser sogenannten Dimere auf der Zelloberfläche gebildet werden, regt dies die Zellen übermäßig zur Zellteilung und Wachstum an, was zu bösartigen Tumoren und Metastasen führen kann.
Originalpublikation:
D. Peckys, J.-P. Baudoin, M. Eder, U.Werner, N. de Jonge, “Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy”, Scientific Reports 3 (2013), Article Number: 2626, doi: 10.1038/srep02626
Ansprechpartner:
Dr. Diana B. Peckys
INM – Leibniz-Institut für Neue Materialien
Programmbereich Innovative Elektronenmikroskopie
Tel: 0681-9300-389
diana.peckys(at)inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für Implantatoberflächen, Neue Oberflächen für tribologische Anwendungen sowie Nanosicherheit. Die Forschung am INM gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie. Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 190 Mitarbeiter.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie