Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glas für Batterieelektrode

13.01.2015

Heutige Lithium-Ionen-Batterien sind gut, aber nicht gut genug, falls unser künftiges Energiesystem auf elektrischen Strom abstützt. Chemiker und Materialforscher der ETH Zürich haben nun ein Material entwickelt, das als Elektrodenmaterial in Lithium-Ionen-Batterien die Kapazität und Energiedichte heutiger Batterien massiv erhöhen dürfte.

Energieexperten betonen es schon eine Weile immer wieder aufs Neue: In Zukunft werden wir viel mehr (sauberen) Strom brauchen, um fossile Energieträger zu ersetzen und den CO2-Ausstoss zu verringern. So sollen beispielsweise anstelle von benzinbetriebenen Autos Elektrofahrzeuge auf unseren Strassen verkehren.


Dieses Material könnte die Batterieleistung verdoppeln: Vanadat-Borat-Glas.

Bild: ETH Zürich/Peter Rüegg

Doch damit Elektrofahrzeuge grosse Reichweiten oder Handy-Batterien möglichst lange Akkulaufzeiten erreichen, braucht es mehr und bessere Batterien. Auch beim Umstieg auf erneuerbare Energiequellen spielen Speicher eine wichtige Rolle, um überschüssigen Strom aus Wind- oder Solarenergieanlagen zu lagern und Schwankungen bei der Energiebereitstellung auszugleichen.

Die Forschung sucht deshalb fieberhaft nach neuen Materialien, die bei gleichem Volumen und Gewicht eine höhere Energiedichte und mehr Ladekapazität aufweisen als die heutigen Lithium-Ionen-Batterien. Diese liefern unseren Smartphones, Elektroautos und Laptops zuverlässig Strom, können aber mit den wachsenden Anforderungen an Batterien nicht mithalten. «Was wir brauchen, sind neue Materialien und eine komplett neue Chemie um sichere, bessere und langlebigere Batterien zu entwickeln», fasst Semih Afyon, wissenschaftlicher Mitarbeiter am Institut für Elektrochemische Materialien, die Grundidee der Batterieforschung zusammen.

Glaspartikel statt Kristalle

ETH-Wissenschaftler unter der Leitung von Semih Afyon und des emeritierten Chemieprofessors Reinhard Nesper sind diesbezüglich nun fündig geworden. In mehrjähriger Forschungsarbeit sind sie auf ein Material gestossen, das die Batterieleistung verdoppeln könnte. Dabei handelt es sich um ein Vanadat-Borat-Glas, das die Forscher als Kathodenmaterial verwenden, wie sie kürzlich in der Fachzeitschrift «Scientific Reports» berichteten.

Das Material besteht aus Vorläufersubstanzen von Vanadiumpentoxid (V2O5) und Lithium-Borat (LiBO2), das überdies mit reduziertem Graphitoxid (RGO) beschichtet wurde, das die Leistung des Materials als Elektrode verbessert.

Die Forscher verwendeten eine vanadiumbasierte Verbindung, weil es von Vanadium zahlreiche Oxidationsstufen gibt. Vanadiumpentoxid beispielsweise kann in kristalliner Form drei positiv geladene Lithium-Ionen aufnehmen – dreimal mehr als Lithium-Eisen-Phosphat, das in heutigen Kathoden verwendet wird.

Allerdings kann kristallines Vanadiumpentoxid nicht alle der eingelagerten Lithium-Ionen freigeben und es lässt nur wenige stabile Lade-Entlade-Zyklen zu. Denn beim Laden dringen die Lithium-Ionen in das Kristallgitter ein, sodass die Elektrodenpartikel insgesamt anschwellen, nur um zu schrumpfen, sobald die Ionen die Partikel verlassen. Dies kann dazu führen, dass sich die Struktur des Elektrodenmaterials verändert und Kontakte verloren gehen.

Die Forscher mussten deshalb eine Lösung dafür finden, damit das Elektrodenmaterial bei maximierter Kapazität seine Struktur beibehält. So kamen sie auf die Idee, statt einer kristallinen Form ein Vanadium-«Glas» zu verwenden. Glas hat eine sogenannt amorphe Struktur, in der sich die Atome nicht wie in einem Kristall in einem regelmässigen Gitter anordnen, sondern in einem wilden Durcheinander.

Kostengünstige und einfache Produktion

Um das Material für die Batteriekathode herzustellen, vermengten die Wissenschaftler pulverförmiges Vanadiumpentoxid mit glasbildenden Boraten. «Das aus dieser Mischung resultierende Glas ist ein neuartiges Material, im Endeffekt also weder Vanadiumpentoxid noch Lithium-Borat» sagt der Forscher. Vanadium (V5+) sei dennoch der aktive Stoff, der die Lithium-Ionen beim Entladen der Batterie aufnehme.

Die Forscher schmolzen das Pulver bei 900°C und kühlten die Schmelze so rasch als möglich ab. Dabei entstanden hauchdünne Glasplättchen, welche vor ihrer Verwendung wieder zu Pulver zerstossen wurden, um die Oberfläche zu vergrössern und Porenraum zu schaffen. «Ein grosser Vorteil des Vanadat-Borat-Glases ist seine einfache und kostengünstige Herstellung», betont Afyon. Das erhöhe die Chancen für eine industrielle Anwendung.

Um eine leistungsfähige Elektrode zu erzeugen, beschichtete der Forscher das Vanadat-Borat-Pulver zudem mit reduziertem Graphitoxid (RGO). Dieses erhöht einerseits die Leitfähigkeit und schützt andererseits die Elektrodenpartikel. Es behindert die Elektronen und Lithium-Ionen bei ihrem Transport durch die Elektrode jedoch nicht.

Aus dem neuen Material gestaltete Afyon schliesslich die Kathode, die er in Prototypen von Knopfzellenbatterien einsetzte.

Bis zu zweimal mehr Strom

Zu Testzwecken unterzog der Forscher diese Prototypen zahlreichen Lade-Entlade-Zyklen. Bei ersten Versuchen mit Vanadat-Borat-Elektroden, die nicht mit RGO beschichtet wurden, fiel die Entladekapazität nach 30 Lade-Entlade-Zyklen drastisch ab, sobald die gespeicherte Ladungsmenge auf 400 Milliampere pro Gramm (mA/g) erhöht wurde. Mit RGO-Beschichtung hingegen blieb die Kapazität auch bei ziemlich hohen Stromraten über 100 Lade-Entlade-Zyklen stabil.

Eine Batterie mit einer RGO-beschichteten Vanadat-Borat-Elektrode verfügte über eine Energiedichte von rund 1000 Wattstunden pro Kilogramm. Sie erreichte eine Entladekapazität, die deutlich über 300 mAh/g (Milliamperestunden pro Gramm) lag. Anfänglich lag diese sogar bei 400 mAh/g, verringerte sich allerdings im Lauf der Lade-Entlade-Zyklen.

«Diese Energie würde dennoch reichen, um ein Handy eineinhalb Mal bis doppelt so lange mit Strom zu versorgen wie heutige Lithium-Ionen-Akkus», schätzt Afyon. Auch könnte dies die Reichweite eines Elektroautos um das Eineinhalbfache vergrössern. Noch sind diese Werte allerdings rechnerischer Natur.

Patent und Weiterentwicklung

Die Forscher haben ihr neues Material bereits zum Patent angemeldet. Für dessen Entwicklung arbeiteten sie zudem mit der Industrie zusammen. Bis sich ein neues Prinzip am Markt durchsetze, würden wohl 10 bis 20 Jahre vergehen.

Die guten Ergebnisse, die die Forscher mit Vanadat-Borat-Glas erzielten, ermutigten sie zu weiterer Forschung. Ein Konsortium unter Jennifer Rupp, Professorin für Elektrochemische Materialien, in dem Afyon Projektleiter ist, arbeitet an einer neuartigen Feststoff-Batterie. In diesem System wird die Vanadat-Borat-Elektrode schon eingesetzt und geprüft. Nun seien sie daran, das System zu optimieren. Insbesondere die Zahl der Lade-Entlade-Zyklen müsse noch stark erhöht werden, was mit einer besseren Auslegung der Batterie und der Elektrode sowie alternativen Beschichtungen anstelle von reduziertem Graphitoxid erreicht werden könne, sagt Afyon.

Literaturhinweis

Afyon S, Krumeich F, Mensing C, Borgschulte A, Nesper R (2014): New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses. Scientific Reports 4, Article number: 7113. doi: 10.1038/srep07113

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/01/glas-fuer-...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Smart und bequem: Neue Textilien für High-Tech-Kleidung, made in Bayreuth
14.02.2018 | Universität Bayreuth

nachricht Super-Werkstoffe für die Automobil-, Luft- und Raumfahrtbranche
12.02.2018 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics