Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gerüstverbindungen: metallorganischer Strukturwandel

08.04.2015

Mit der Pulver-Röntgenbeugung lässt sich die Mechanosynthese von Käfigverbindungen, die sich als Gasspeicher eignen, in Echtzeit verfolgen

Dass ein Gramm einer Substanz eine Oberfläche annähernd so groß wie ein Fußballfeld besitzt, ist kaum vorstellbar. Doch genau das ist bei metallorganischen Gerüstverbindungen der Fall.


Filigrane Käfige: Mit einer Variante der Pulver-Röntgenbeugung, die Wissenschaftler des Max-Planck-Instituts für Festkörperforschung mitentwickelt haben, hat ein internationales Team eine bislang unbekannte Struktur der metallorganischen Gerüstverbindung ZIF-8 entdeckt. Die neue Struktur nennen die Forscher Katsenit.

© Nature Communications 2015


Strukturwandel in der Mühle: Die Katsenit-Struktur existiert in zwei Varianten, dargestellt in den beiden Strukturen rechts. Sie entsteht während der Mechanosynthese von ZIF-8 aus den festen Ausgangsstoffen (links) in einer Kugelmühle. Zunächst entsteht in der Reaktion die bekannte Struktur von ZIF-8 (zweite Struktur von links). Mechanosynthesen lassen sich mit der Variante der Röntgenbeugung nun in Echtzeit verfolgen. Dies könnte Ansatzpunkte liefern, derartige Prozesse zu optimieren.

© Nature Communications 2015

Daher könnten diese MOFs (nach engl: metal-organic framework) einmal gute Dienste leisten, wenn es darum geht, Gase wie Wasserstoff oder Kohlendioxid in großen Mengen aufzunehmen, verlässlich zu speichern oder auch, Gasgemische zu trennen.

Ein internationales Team, an dem auch Wissenschaftler des Max-Planck-Instituts für Festkörperforschung in Stuttgart beteiligt waren, hat nun einen Weg aufgezeigt, wie Gerüstverbindungen umweltfreundlicher und zugleich maßgeschneidert synthetisiert werden könnten.

Die Forscher haben dazu die Mechanosynthese eines weit verbreiteten MOFs auf atomarer Ebene praktisch in Echtzeit verfolgt. Bei einer Mechanosynthese wird die Verbindung direkt aus den festen Ausgangsstoffen erzeugt. Für ihre Echtzeit-Analyse nutzten die Forscher eine Methode, welche die Stuttgarter Max-Planck-Wissenschaftler mitentwickelt hatten. Die gewonnenen Einblicke helfen auch, bisher unbekannte, für praktische Anwendungen aber möglicherweise besonders geeignete Strukturen zu identifizieren.

Man stelle sich zwei Tanks vor, in die Wasserstoff gefüllt wird. In den einen Tank gibt man zuvor aber noch ein besonderes Pulver. Und siehe da: Dieser Tank wird später mehr Wasserstoff aufnehmen als der andere. Was überraschend klingt, hat einen einfachen physikalischen Grund:

Das Pulver besteht aus einer Substanz mit ganz besonderen Hohlräumen, in denen sich außerdem noch zahlreiche perfekte Bindungsstellen für Wasserstoff befinden. Die Folge: Die Wasserstoffmoleküle können nicht nur aufgenommen werden, sondern dabei auch noch besonders dicht zusammenrücken.

Noch gibt es diesen Tank mitsamt dem Pulver nicht in Serienproduktion. Aber das Pulver mit den beschriebenen Eigenschaften ist vom Prinzip her bereits bekannt. Mit großer Wahrscheinlichkeit würde man dafür eine sogenannte MOF-Substanz verwenden – ein metal-organic framework, zu deutsch also eine metallorganische Gerüststruktur.

Eine Gruppe um Forscher der McGill University im kanadischen Montreal und des Ruđer Bošković Instituts im kroatischen Zagreb vertieft nun das Verständnis darüber, wie solche MOFs in einer umweltfreundlichen Synthese entstehen. Dabei kommt eine spezielle Form der Röntgenbeugung zum Einsatz, die Robert E. Dinnebier und seine Kollegen am Max-Planck-Institut für Festkörperforschung maßgeblich mitentwickelt haben.

Neue Kristallstruktur einer bekannten Gerüstverbindung

Das Verfahren erlaubt es, die strukturellen Veränderungen während der chemischen Reaktion praktisch kontinuierlich zu verfolgen. Das liefert Ansatzpunkte, um den Herstellprozess zu verbessern. Darüber hinaus entdeckten die Wissenschaftler eine bislang unbekannte Kristallstruktur eines bereits kommerziell verfügbaren MOFs. Die Analysemethode könnte also helfen, um Gerüstverbindungen mit bislang unbekannten Strukturen und möglicherweise nützlichen Eigenschaften zu identifizieren – und herzustellen.

Ihren generell für viele Anwendungen interessanten Aufbau verdanken MOFs ihrer chemischen Zusammensetzung: Sie sind aus Metallatomen wie Zink, Kupfer oder Chrom aufgebaut, die ihrerseits über organische Substanzen miteinander verknüpft sind. Gemeinsam bilden diese metallorganischen Bausteine ausgesprochen regelmäßige dreidimensionale Strukturen. Diese kann man sich wie etwas dickere Streben eines großen 3-D-Gitters vorstellen. Die dabei entstehenden Hohlräume können dann zum Beispiel Gase aufnehmen.

Wasserstoff als Kraftstoff in einem Autotank zu speichern, ist dabei nur eine von verschiedenen Verwendungsmöglichkeiten für metallorganische Gerüstverbindungen. Solche Käfigverbindungen könnten auch zuverlässig Kohlendioxid einzuschließen, das sich dann zum Beispiel unter Tage entsorgen ließe. Je nach Größe und Querschnitt der Poren und Kanäle eignen sich MOFs zudem, um Gasgemische zu trennen. Gase können in ihnen aber auch zur Reaktion gebracht werden, wobei die eingebauten Metallatome als Katalysatoren wirken.

Chemie in der Mühle

Bislang bringen Chemiker bei der MOF-Synthese ein Salz des gewünschten Metalls mit der organischen Substanz, welche die Brücken zwischen den Metallatomen bildet, üblicherweise in einem Lösungsmittel zusammen. Nach der Reaktion verdampfen sie das Lösungsmittel, und zurück bleibt die Gerüststruktur. Weil dieser letzte Prozessabschnitt besonders energieaufwendig ist, arbeiten Wissenschaftler an Wegen ohne Lösungsmittel. Eine Alternative könnte die sogenannte Mechanosynthese bieten.

Dabei mischen Chemiker Metallverbindung und organische Substanz einfach als Feststoffe zusammen – und führen die für die Reaktion benötigte Energie zu, indem sie das Gemisch mahlen und pressen. Im Fall eines kommerziell erhältlichen MOF, dem sogenannten ZIF-8 (zeolitic imidazolate framework 8), weiß man bereits: Es ließe sich tatsächlich durch Mahlen von Zinkoxid und 2-Methylimidazol gewinnen.

„Allerdings wusste man bisher überhaupt nicht, was bei solchen Mechanosynthesen eigentlich passiert und wie sie ablaufen“, sagt Robert E. Dinnebier, der am Stuttgarter Max-Planck-Institut für Festkörperforschung die Wissenschaftliche Servicegruppe Röntgenographie leitet. So habe man solche Reaktionen bisher immer unterbrechen müssen, um sie zu untersuchen.

Mit besonders energiereicher Röntgenstrahlung lässt sich die Reaktion verfolgen

In einem Projekt mit Forschern aus Kanada, Kroatien und Frankreich hat Dinnebiers Team nun gezeigt, wie man die mechanische ZIF-8-Synthese in Echtzeit und dabei praktisch kontinuierlich verfolgen kann. Sie wandten dafür die sogenannte Röntgenpulverbeugung an. Bei diesem Verfahren wird gemessen, in welchen Winkeln eine Probe eingestrahltes Röntgenlicht ablenkt (beugt). Die Beugungswinkel geben Hinweise auf die Lage einzelner Atome und damit letztlich auch auf die übergeordnete räumliche Kristallstruktur.

Um dieses gängige Verfahren auch während einer Feststoffsynthese, also in situ, anwenden zu können, bedarf es allerdings ganz besonders energiereicher Röntgenstrahlung. Schließlich muss die Strahlung nicht nur das Reaktionsgemisch durchdringen, sondern auch das Reaktionsgefäß. Die Forscher nutzten daher besonders kurzwellige Röntgenstrahlung, wie sie von extrem beschleunigten Elektronen in sogenannten Synchrotron-Einrichtungen abgegeben wird. Mit ihr war es schließlich erstmals möglich, den Verlauf einer mechanischen ZIF-8-Synthese im Abstand weniger Sekunden zu verfolgen, ohne die Reaktion unterbrechen zu müssen.

Die Einblicke helfen bei der Suche nach den optimalen Prozessbedingungen

Die Forscher erlebten dabei allerdings eine Überraschung. Zwar wiesen sie nach, dass sich die Ausgangssubstanzen schon binnen weniger Minuten tatsächlich zur bekannten ZIF-8-Struktur formieren. Allerdings ging diese Struktur bei längerem Mahlen wieder verloren. Stattdessen bildeten sich zwei weitere Kristallstrukturen, von denen die eine bisher sogar völlig unbekannt war. Noch sind diese nach ersten Erkenntnissen ohne praktischen Nutzen. Doch den Befund an sich bezeichnet Max-Planck-Forscher Robert E. Dinnebier bereits als wertvoll: „So etwas hilft schließlich, die optimalen Prozessbedingungen festzulegen, wenn man ZIF-8 mechanisch synthetisieren möchte.“

Und das gelte auch über das ZIF-8-Beispiel hinaus. „Mit der In-situ-Röntgenpulverbeugung können wir nun generell genau studieren, wie sich bestimmte Prozessbedingungen wie etwa Temperatur, Druck, die Mengen der Ausgangssubstanzen oder auch von Hilfsstoffen, Mahlstärke und Mahldauer auf den Verlauf von MOF-Synthesen aller Art auswirken“, sagt Dinnebier.

Je mehr MOF-Substanzen wissenschaftlich oder industriell interessant werden, desto wichtiger werde es sein, diese Subtanzen wirtschaftlich möglichst effizient herstellen zu können. Die Mechanosynthese könnte dabei zu einer hilfreichen Technik werden. „Dafür wiederum ist es aber wichtig, die optimalen Prozessbedingungen für solche Synthesen zu kennen“, so Dinnebier. Je mehr man über die Mechanismen bei der jeweiligen Kristallstrukturbildung wisse, desto einfacher werde dies.


Ansprechpartner

Prof. Dr. Robert E. Dinnebier
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1503

E-Mail: r.dinnebier@fkf.mpg.de


Originalpublikation
Athanassios D. Katsenis, Andreas Puškarić, Vjekoslav Štrukil1, Cristina Mottillo, Patrick A. Julien, Krunoslav Užarević, Minh-Hao Pham, Trong-On Do, Simon A.J. Kimber, Predrag Lazić, Oxana Magdysyuk, Robert E. Dinnebier, Ivan Halasz und Tomislav Friščić

In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework

Nature Communications, 23. März 2015; doi: 10.1038/ncomms7662

Tomislav Friščić, Ivan Halasz, Patrick J. Beldon, Ana M. Belenguer, Frank Adams, Simon A.J. Kimber5 Veijo Honkimäki und Robert E. Dinnebier

Real-time and in situ monitoring of mechanochemical milling reactions

Nature Chemistry, 2. Dezember 2012; DOI: 10.1038/NCHEM.1505

Prof. Dr. Robert E. Dinnebier | Max-Planck-Institut für Festkörperforschung, Stuttgart
Weitere Informationen:
http://www.mpg.de/9152328/metallorganisch-geruestverbindung-mechanosynthese

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten