Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gelenkknorpelschäden: Hilfe aus dem Drucker

24.01.2013
Knorpeldefekte heilen: Das ist das Ziel eines neuen internationalen Forschungsverbunds. Implantate, die ähnlich wie das natürliche Gewebe aufgebaut sind, sollen Schäden im Gelenk dauerhaft reparieren. Die EU finanziert das Projekt mit fast zehn Millionen Euro; koordiniert wird es von Würzburg aus.

Wenn Jürgen Groll die Eigenschaften von Knorpel aufzählt, ist die Bewunderung kaum zu überhören. „Knorpel ist im Prinzip ein Hightech-Komposit“, sagt er. Was für den Laien nach einer einheitlich weißlichen Substanz aussieht, erweist sich bei genauer Betrachtung als raffiniertes Schichtwerk unterschiedlicher Strukturen.


Ein mehrschichtiges Implantat: So könnte der Knorpelersatz aussehen, den die Wissenschaftler des Forschungsverbunds HydroZONES entwickeln wollen.
Grafik HydroZONES


Ein mehrschichtiges Implantat: So könnte der Knorpelersatz aussehen, den die Wissenschaftler des Forschungsverbunds HydroZONES entwickeln wollen.

„Beispielsweise sind die Kollagenfasern in der Knorpelschicht, die dem Knochen anliegt, senkrecht orientiert und sorgen somit für eine feste Verbindung“, erklärt Groll. In höheren Schichten liegen die Fasern hingegen quer und können damit besonders gut Scherkräfte absorbieren.

Knorpel: ein ganz besonderes Material

Tiefere Schichten ähneln einem Gel, das stark negativ geladen ist. Auf diese Weise zieht es massiv Wasser an. Wasser, das wieder entweicht, wenn Druck auf das Gewebe ausgeübt wird, beispielsweise beim Laufen auf das Knie. Damit dämpft Knorpel die Erschütterung. Sinkt der Druck, kehrt das Wasser von alleine wieder zurück.

Ganz besonders fasziniert ist Groll von den Eigenschaften der Knorpeloberfläche. Damit Bewegungen im wahrsten Sinne des Wortes möglichst reibungslos verlaufen, ist Knorpel dort „so glitschig, wie man es technisch nicht erreichen kann“, sagt er. Der Reibungskoeffizient erreiche dort einen Wert „ähnlich wie Wasser auf Eis.“

Kurz: „Es gibt kein anderes Material, das über die Eigenschaften von Knorpel verfügt“, sagt Groll. Jürgen Groll hat seit August 2010 an der Universität Würzburg den Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde inne. Er forscht dort an neuen Materialien, die am Patienten zum Einsatz kommen sollen. Seit Anfang dieses Jahres leitet er einen neuen, europaweiten Forschungsverbund, in dessen Mittelpunkt Knorpelgewebe steht.

„HydroZONES“: So lautet der Name des Forschungsverbunds. Neben der Universität und dem Universitätsklinikum Würzburg sind Forschungseinrichtungen und Firmen aus Heidelberg, Dresden, Aachen, München, Oxford, Utrecht, Groningen, Pamplona und dem portugiesischen Leiria daran beteiligt. Und auch eine Gruppe aus Australien ist mit im Boot. Mit 9,75 Millionen Euro wird die EU die Arbeit der Wissenschaftler in den kommenden fünf Jahren finanzieren. Etwas mehr als zwei Millionen davon werden nach Würzburg fließen.

Knorpelschäden – ein Volksleiden

Knorpelschäden sind eine der Hauptursachen für chronische Schmerzen, eingeschränkte Beweglichkeit und einem Verlust an Lebensqualität. Arthrose ist die häufigste aller Gelenkerkrankungen. Weltweit sollen mehr als 151 Millionen Menschen davon betroffen sein; in Deutschland leiden mehr als fünf Millionen Menschen daran. Sportverletzungen können die Ursache sein, aber genauso auch ein normaler Altersverschleiß. Am Anfang steht häufig nur ein kleiner Defekt, der weiter wächst, weil der Körper nicht in der Lage ist, Knorpelgewebe selbst neu zu bilden. Ist die Knorpelschicht großflächig zerstört, ist ein operativer Eingriff in der Regel unumgänglich. In schweren Fällen bleibt dann der Einsatz eines künstlichen Gelenks einzige Alternative.

Das könnte sich ändern, wenn der Forschungsverbund sein Ziel erreicht. „Wir verfolgen die Hypothese, dass es mit speziell konstruierten Implantaten möglich ist, den Körper dazu zu bringen, Knorpeldefekte mit eigenem Gewebe wieder zu schließen“, erklärt Groll. Der Trick dabei: Die Wissenschaftler wollen Implantate entwickeln, die in ihrem mehrschichtigen Aufbau möglichst exakt dem Vorbild aus der Natur entsprechen.

Regenerieren statt reparieren

Mehrere Lagen eines Hydrogels, stabilisierende Lagen aus Kunststoffgeweben und dazu Botenstoffe, die spezielle Zellen anlocken, oder die entsprechenden Zellen gleich selbst: So könnte der Knorpelersatz aussehen. Aufgabe des Implantats ist es, das körpereigene Gewebe zum Wachsen zu bringen: „Regenerieren statt reparieren“, lautet nach Grolls Worten das Motto. Und weil der Knorpel dazu von allein nicht in der Lage ist, müsse man ihm eben helfen. Das Implantat selbst soll vom Körper im Laufe der Zeit in dem Maße abgebaut werden, in dem dieser neues Knorpelgewebe selbst aufbaut.

Zwar gibt es auch heute schon Implantate, mit denen Mediziner defekte Knorpelstellen ausbessern können. Die sind aber nicht dazu fähig, natürlichen Gelenkknorpel mit all seinen Eigenschaften in vergleichbarer Weise zu ersetzen. Und das Ersatzgewebe, das durch die derzeit in der Klinik verwendeten Materialien induziert wird, hält dem Einsatz an hoch belasteten Stellen wie beispielsweise dem Knie nicht für lange Zeit stand. Der Grund dafür liegt nach Ansicht der an dem Forschungsverbund beteiligten Wissenschaftler auf der Hand: Weil diese Implantate nicht wie natürlicher Knorpel in Schichten aufgebaut sind, können sie auch nicht die Bildung echten Knorpelgewebes induzieren.

Produktion im Drucker

Die Technik für die Produktion der Implantate ist vom Prinzip her einfach: Wie bei einem Tintenstrahldrucker bauen kleine Biofabriken die künstlichen Knorpelscheiben Schicht für Schicht auf. Mit dem Unterschied, dass die Druckköpfe in diesem Fall nicht Tinte enthalten, sondern je nachdem, welche Schicht gerade aufgetragen wird, Hydrogele unterschiedlicher Dichte, Wachstumsfaktoren, Hormone, Knorpel bildende Zellen – Chondrozyten genannt – und anderes mehr. Der ganze Prozess soll vollautomatisch ablaufen und natürlich unter sterilen Bedingungen.

Das hört sich einfach an, ist aber gerade wegen der gewünschten Automatisierung und der zwingend erforderlichen Sterilität eine große, interdisziplinäre Herausforderung, wie Jürgen Groll sagt. Auch deshalb ist der Forschungsverbund mit 17 Partnern, die teilweise aus mehreren Gruppen zusammengesetzt sind, so groß. „Eine solche Herausforderung kann man nur in einem großen europäischen Konsortium mit vielen Experten aus unterschiedlichen Fachgebieten bewältigen“, sagt Groll.

Die Würzburger Beteiligten

Würzburg ist sowohl mit der Universität als auch dem Universitätsklinikum in das Forschungsprojekt eingebunden. Jürgen Groll ist der Experte für das Trägermaterial. Er kennt sich aus mit Hydrogelen, Kunststoffgeweben und deren Eigenschaften. Heike Walles, Professorin und Inhaberin des Lehrstuhls für Tissue Engineering und regenerative Medizin, hat langjährige Erfahrung mit der automatisierten Herstellung von Biomaterialien. In ihrem Labor züchtet sie schon seit Längerem Leber, Haut und andere Gewebe. Thorsten Blunk hat seit gut drei Jahren an der Würzburger Universitätsklinik die Professur für experimentelle Unfallchirurgie inne. Dort forscht er unter anderem am Tissue Engineering von Knorpelgewebe. Aus klinischer Sicht begleiten Professor Maximilian Rudert, Inhaber des Lehrstuhls für Orthopädie und Leiter der Orthopädischen Klinik König-Ludwig-Haus, sowie Professor Ulrich Nöth, Leiter der experimentellen Orthopädie am König-Ludwig Haus, das Projekt. Beiden sind die Anwendungsorientierung der Forschung und die Nähe zum Patienten besondere Anliegen.

Das Ziel

„Wenn alles optimal läuft, haben wir in fünf Jahren ein Konstrukt, das in klinische Tests gehen kann“, beschreibt Jürgen Groll das Ziel des Forschungsverbunds. Wenn dort keine Probleme auftauchen, dauere es noch einmal mindestens fünf Jahre, bis ein Implantat existiert, das tatsächlich in der Klinik am Patienten zum Einsatz kommen kann, schätzt der Wissenschaftler. Aber auch wenn dies hochgesteckte Ziel nicht erreicht wird, werde die Arbeit nicht umsonst gewesen sein. Dafür unterteilen die Forscher ihr Projekt in mehrere Arbeitsschritte mit zunehmendem Komplexitätsgrad. Verbesserungen an den bereits heute existierenden Verfahren werde es somit auf jeden Fall geben, ist sich Groll sicher. Wie weit diese Verbesserungen gehen, müssen die kommenden Jahre zeigen.

Kontakt

Prof. Dr. Jürgen Groll, T: (0931) 201-73510;
E-Mail: juergen.groll@fmz.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE