Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie von Geisterhand: Programmierte Nanopartikel organisieren sich zu hochkomplexen Nanostrukturen

04.11.2013
Zellen von Pflanzen und Tieren sind ein prominentes Beispiel dafür, wie die Natur – ausgehend von molekularen Strukturen des Erbguts – in einer zielgerichteten, vorprogrammierten Weise immer größere Einheiten aufbaut. Die Nanotechnologie versucht dieses Bottom-up-Prinzip zu kopieren, indem sie die Fähigkeit von Nanopartikeln zur selbständigen Strukturbildung nutzt.

Daran anknüpfend, stellen Polymerwissenschaftler aus Bayreuth, Aachen, Jena, Mainz und Helsinki jetzt in "Nature" ein neuartiges Prinzip der Selbst-Aggregation vor, das sich künftig als sehr vorteilhaft erweisen könnte – sowohl für die weitere Erforschung dieser Prozesse als auch für technologische Anwendungen.


Elektronenmikroskopische Aufnahme: Nanopartikel, die durch Selbst-Aggregation entstanden sind, schließen sich zu einer „Raupenmizelle" zusammen. Li. oben: Foto einer Schmetterlingsraupe.

EM-Aufnahme: Forschungsgruppe Prof. Axel Müller // Foto der Schmetterlingsraupe: Urheberrechte am Bild Anest, mit Nutzungslizenz von Shutterstock.com // Abb. nur mit diesen Angaben zur Veröff. frei.


Durch Selbst-Aggregation schließen sich Triblock-Terpolymere jeweils zu Nanopartikeln zusammen. Diese bilden durch Co-Aggregation eine Großstruktur, die einer Schmetterlingsraupe ähnlich sieht.


Grafik: Forschungsgruppe Prof. Axel Müller; mit Quellenangabe zur Veröffentlichung frei.

Die Forschungsgruppe wurde von dem Polymerchemiker Prof. Dr. Axel Müller geleitet, der bis zu seiner Emeritierung im Jahre 2012 den Lehrstuhl für Makromolekulare Chemie II an der Universität Bayreuth innehatte und jetzt als Fellow des Gutenberg Forschungskollegs an der Universität Mainz tätig ist. Die weiteren Mitglieder des Teams sind Dr. André Gröschel (früher Universität Bayreuth, jetzt Aalto University Helsinki), Tina Löbling und Dr. Holger Schmalz (Universität Bayreuth), Dr. Andreas Walther (DWI an der RWTH Aachen) und Jun.-Prof. Dr. Felix Schacher (Universität Jena).

Der DFG-Sonderforschungsbereich 840 "Von partikulären Nanosystemen zur Mesotechnologie" an der Universität Bayreuth hat die Forschungsarbeiten gefördert.

Von Makromolekülen zu weichen Nanopartikeln

Ausgangspunkt für das in "Nature" veröffentlichte Prinzip der Selbst-Aggregation sind kettenartige Makromoleküle mit einer Größe zwischen 10 und 20 Nanometern. Es handelt sich, chemisch gesprochen, um Triblock-Terpolymere. Diese bestehen aus drei linearen, kettenartig miteinander verbundenen Abschnitten ("Blöcken"). Sie werden durch ein spezielles Synthese-Verfahren, die so genannte lebende Polymerisation, hergestellt und sind für die Forschung leicht zugänglich. Die Forschungsgruppe konnte die dreiteiligen Makromoleküle nun dazu veranlassen, sich zu weichen Nanopartikeln mit einem Durchmesser von rund 50 Nanometern zusammenzuschließen. Bei dieser Selbst-Aggregation der Makromoleküle spielten Lösungsmittel eine wesentliche Rolle. Diese wurden so zielgenau ausgewählt und eingesetzt, dass die unterschiedliche Löslichkeit der drei Blöcke und die Unverträglichkeit von Polymeren untereinander entscheidend zur Entstehung der gewünschten inneren Struktur der Nanopartikel beigetragen haben.

Die Wissenschaftler haben dieses Verfahren auf zwei Sorten von "Triblock-Terpolymeren" angewendet. Deren Unterschied liegt in der chemischen Beschaffenheit der mittleren Blöcke: Die einen Makromoleküle haben die Struktur "A – B – C", die anderen die Struktur "A – D – C". Erstere bilden Nanopartikel mit nur einer Bindungsstelle und tendieren dazu, sich zu kugelartigen Überstrukturen zusammenfinden; letztere bilden Nanopartikel mit zwei Bindungsstellen und sind dementsprechend geneigt, sich in kettenartigen Überstrukturen zu organisieren. Entscheidend ist dabei: In beiden Fällen ist die Struktur der Nanopartikel durch die Synthese der zugrunde liegenden Makromoleküle vorprogrammiert, ähnlich wie die Struktur eines Proteins durch die Abfolge der Aminosäuren vorherbestimmt wird.

Die Mischung macht’s: Von weichen Nanopartikeln zu "Raupenmizellen"

Mit den Nanopartikeln ist der Prozess der Selbst-Aggregation aber noch nicht beendet. Würde man die aus den Makromolekülen entstandenen Nanopartikel voneinander getrennt halten und sich selbst überlassen, entstünden tatsächlich einerseits kugelartige, andererseits kettenartige Überstrukturen. Doch die Gruppe um Prof. Müller hat stattdessen eine andere Forschungsidee entwickelt und umgesetzt: Die unterschiedlich strukturierten Nanopartikel wurden so gemischt, dass sie gemeinsam – in einem Prozess der Co-Aggregation – eine völlig neue Überstruktur bilden. Darin wechseln sich Nanopartikel, die aus Molekülen mit der Struktur "A – B – C" hervorgegangen sind, und Nanopartikel, die sich aus Molekülen mit der Struktur "A – D – C" gebildet haben, in einer exakt definierten Weise einander ab.

Die neue übergeordnete Struktur hat, wenn sie mit dem Elektronenmikroskop sichtbar gemacht wird, starke Ähnlichkeit mit einer farbenprächtigen Schmetterlingsraupe. Denn diese besteht gleichfalls aus klar voneinander abgegrenzten, regelmäßig aufeinander folgenden Abschnitten. Die Forschungsgruppe um Prof. Müller hat deshalb für diese durch Co-Aggregation gebildete Großstruktur den Begriff "Raupenmizelle" geprägt.

Zukunftsperspektiven: Auf dem Weg zu neuen Technologien

Die jetzt in "Nature" veröffentlichten Forschungsergebnisse sind ein Meilenstein auf dem Weg zu neuartigen hierarchischen Strukturen, die aus programmierten Prozessen der Selbst-Aggregation hervorgehen. Sie markieren insofern einen Paradigmenwechsel, als sich die bisherige Forschung oft auf Verfahren der Strukturierung konzentriert hat, die auf dem Top-down-Prinzip beruhen, also dem Herausarbeiten einer Mikrostruktur aus einem größeren Komplex. "Dieses Prinzip stößt in absehbarer Zukunft an seine Auflösungsgrenzen", erklärt Prof. Müller. "Komplexe Strukturen im Nanometer-Bereich sind nur in den seltensten Fällen realisierbar."

Das an der Natur orientierte Bottom-up-Prinzip, das die Fähigkeiten zur Selbst-Aggregation nutzt, eröffnet hingegen weitreichende Zukunftsperspektiven. Besonders attraktiv ist dabei die Vielzahl der Makromoleküle, die als Grundbausteine infrage kommen. Sie können dazu dienen, bestimmte Funktionalitäten gezielt in die angestrebten Großstrukturen einzuschleusen, wie beispielsweise die Sensibilität für Einflüsse aus der Umgebung (Temperatur, Licht, elektrische und magnetische Felder, etc.) oder die Schaltbarkeit. Denkbare Anwendungen wären die Nanolithographie oder die zeitlich und lokal vorprogrammierte Medikamentenfreisetzung. Auch hier zeigt sich wieder die Analogie zum Bauprinzip der Tier- und Pflanzenzelle, wo unterschiedliche Funktionen in räumlich abgegrenzten Bereichen untergebracht sind.

Makromoleküle, die der Polymerforschung als Träger bestimmter Funktionalitäten zur Verfügung stehen, können hundertmal kleiner als ein Mikrometer sein. Dementsprechend hoch ist die Feinheit von übergeordneten Strukturen, die letztlich aus ihnen hervorgehen. "Zukünftige Technologien – wie etwa maßgeschneiderte künstliche Zellen, Transistoren oder Elemente für die Mikro-/Nano-Robotik – können von dieser geringen Auflösungsgrenze erheblich profitieren", erklärt Prof. Müller. "Für unsere in 'Nature' vorgestellten Forschungsergebnisse zeichnen sich derzeit zwar noch keine sofortigen Anwendungen ab. Aber je besser wir die Bottom-up-Prozesse verstehen lernen, die von Molekülen im Nanometerbereich zu höheren Hierarchie-Ebenen im Mikrometerbereich führen, desto greifbarer werden darauf basierende neue Technologien." Die Raupenmizellen sind denn auch keineswegs die einzigen Großstrukturen, die sich aus den durch Selbst-Aggregation gebildeten Nanopartikeln herstellen lassen. "Diese weichen Nanopartikel können zum Beispiel auch mit anorganischen oder biologischen Nano- und Mikropartikeln kombiniert werden, sodass bisher unbekannte Funktionsmaterialien entstehen. Die Kombinationsmöglichkeiten sind schier endlos", so Prof. Müller.

Veröffentlichung:

André H. Gröschel, Andreas Walther, Tina I. Löbling, Felix H. Schacher, Holger Schmalz, Axel H.E. Müller,
Guided Hierarchical Co-Assembly of Soft Patchy Nanoparticles,
in: Nature, DOI: 10.1038/nature12610
Ansprechpartner für weitere Informationen:
Professor Dr. Axel Müller
Johannes Gutenberg-Universität
D-55099 Mainz.
Tel.: 06131-3922372
E-Mail: axel.mueller@uni-mainz.de
Dr. André Gröschel
Department of Applied Physics
School of Science
Aalto University
FIN-00076 Helsinki
Finnland.
Tel.: +358-50-4346991
E-Mail: andre.groschel@aalto.fi

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten

Deutscher Innovationspreis für Klima und Umwelt 2017 ausgeschrieben

23.01.2017 | Förderungen Preise

Aufwind für die Luftfahrt: University of Twente entwickelt leistungsstarke Verbindungsmethode

23.01.2017 | Maschinenbau