Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie von Geisterhand: Programmierte Nanopartikel organisieren sich zu hochkomplexen Nanostrukturen

04.11.2013
Zellen von Pflanzen und Tieren sind ein prominentes Beispiel dafür, wie die Natur – ausgehend von molekularen Strukturen des Erbguts – in einer zielgerichteten, vorprogrammierten Weise immer größere Einheiten aufbaut. Die Nanotechnologie versucht dieses Bottom-up-Prinzip zu kopieren, indem sie die Fähigkeit von Nanopartikeln zur selbständigen Strukturbildung nutzt.

Daran anknüpfend, stellen Polymerwissenschaftler aus Bayreuth, Aachen, Jena, Mainz und Helsinki jetzt in "Nature" ein neuartiges Prinzip der Selbst-Aggregation vor, das sich künftig als sehr vorteilhaft erweisen könnte – sowohl für die weitere Erforschung dieser Prozesse als auch für technologische Anwendungen.


Elektronenmikroskopische Aufnahme: Nanopartikel, die durch Selbst-Aggregation entstanden sind, schließen sich zu einer „Raupenmizelle" zusammen. Li. oben: Foto einer Schmetterlingsraupe.

EM-Aufnahme: Forschungsgruppe Prof. Axel Müller // Foto der Schmetterlingsraupe: Urheberrechte am Bild Anest, mit Nutzungslizenz von Shutterstock.com // Abb. nur mit diesen Angaben zur Veröff. frei.


Durch Selbst-Aggregation schließen sich Triblock-Terpolymere jeweils zu Nanopartikeln zusammen. Diese bilden durch Co-Aggregation eine Großstruktur, die einer Schmetterlingsraupe ähnlich sieht.


Grafik: Forschungsgruppe Prof. Axel Müller; mit Quellenangabe zur Veröffentlichung frei.

Die Forschungsgruppe wurde von dem Polymerchemiker Prof. Dr. Axel Müller geleitet, der bis zu seiner Emeritierung im Jahre 2012 den Lehrstuhl für Makromolekulare Chemie II an der Universität Bayreuth innehatte und jetzt als Fellow des Gutenberg Forschungskollegs an der Universität Mainz tätig ist. Die weiteren Mitglieder des Teams sind Dr. André Gröschel (früher Universität Bayreuth, jetzt Aalto University Helsinki), Tina Löbling und Dr. Holger Schmalz (Universität Bayreuth), Dr. Andreas Walther (DWI an der RWTH Aachen) und Jun.-Prof. Dr. Felix Schacher (Universität Jena).

Der DFG-Sonderforschungsbereich 840 "Von partikulären Nanosystemen zur Mesotechnologie" an der Universität Bayreuth hat die Forschungsarbeiten gefördert.

Von Makromolekülen zu weichen Nanopartikeln

Ausgangspunkt für das in "Nature" veröffentlichte Prinzip der Selbst-Aggregation sind kettenartige Makromoleküle mit einer Größe zwischen 10 und 20 Nanometern. Es handelt sich, chemisch gesprochen, um Triblock-Terpolymere. Diese bestehen aus drei linearen, kettenartig miteinander verbundenen Abschnitten ("Blöcken"). Sie werden durch ein spezielles Synthese-Verfahren, die so genannte lebende Polymerisation, hergestellt und sind für die Forschung leicht zugänglich. Die Forschungsgruppe konnte die dreiteiligen Makromoleküle nun dazu veranlassen, sich zu weichen Nanopartikeln mit einem Durchmesser von rund 50 Nanometern zusammenzuschließen. Bei dieser Selbst-Aggregation der Makromoleküle spielten Lösungsmittel eine wesentliche Rolle. Diese wurden so zielgenau ausgewählt und eingesetzt, dass die unterschiedliche Löslichkeit der drei Blöcke und die Unverträglichkeit von Polymeren untereinander entscheidend zur Entstehung der gewünschten inneren Struktur der Nanopartikel beigetragen haben.

Die Wissenschaftler haben dieses Verfahren auf zwei Sorten von "Triblock-Terpolymeren" angewendet. Deren Unterschied liegt in der chemischen Beschaffenheit der mittleren Blöcke: Die einen Makromoleküle haben die Struktur "A – B – C", die anderen die Struktur "A – D – C". Erstere bilden Nanopartikel mit nur einer Bindungsstelle und tendieren dazu, sich zu kugelartigen Überstrukturen zusammenfinden; letztere bilden Nanopartikel mit zwei Bindungsstellen und sind dementsprechend geneigt, sich in kettenartigen Überstrukturen zu organisieren. Entscheidend ist dabei: In beiden Fällen ist die Struktur der Nanopartikel durch die Synthese der zugrunde liegenden Makromoleküle vorprogrammiert, ähnlich wie die Struktur eines Proteins durch die Abfolge der Aminosäuren vorherbestimmt wird.

Die Mischung macht’s: Von weichen Nanopartikeln zu "Raupenmizellen"

Mit den Nanopartikeln ist der Prozess der Selbst-Aggregation aber noch nicht beendet. Würde man die aus den Makromolekülen entstandenen Nanopartikel voneinander getrennt halten und sich selbst überlassen, entstünden tatsächlich einerseits kugelartige, andererseits kettenartige Überstrukturen. Doch die Gruppe um Prof. Müller hat stattdessen eine andere Forschungsidee entwickelt und umgesetzt: Die unterschiedlich strukturierten Nanopartikel wurden so gemischt, dass sie gemeinsam – in einem Prozess der Co-Aggregation – eine völlig neue Überstruktur bilden. Darin wechseln sich Nanopartikel, die aus Molekülen mit der Struktur "A – B – C" hervorgegangen sind, und Nanopartikel, die sich aus Molekülen mit der Struktur "A – D – C" gebildet haben, in einer exakt definierten Weise einander ab.

Die neue übergeordnete Struktur hat, wenn sie mit dem Elektronenmikroskop sichtbar gemacht wird, starke Ähnlichkeit mit einer farbenprächtigen Schmetterlingsraupe. Denn diese besteht gleichfalls aus klar voneinander abgegrenzten, regelmäßig aufeinander folgenden Abschnitten. Die Forschungsgruppe um Prof. Müller hat deshalb für diese durch Co-Aggregation gebildete Großstruktur den Begriff "Raupenmizelle" geprägt.

Zukunftsperspektiven: Auf dem Weg zu neuen Technologien

Die jetzt in "Nature" veröffentlichten Forschungsergebnisse sind ein Meilenstein auf dem Weg zu neuartigen hierarchischen Strukturen, die aus programmierten Prozessen der Selbst-Aggregation hervorgehen. Sie markieren insofern einen Paradigmenwechsel, als sich die bisherige Forschung oft auf Verfahren der Strukturierung konzentriert hat, die auf dem Top-down-Prinzip beruhen, also dem Herausarbeiten einer Mikrostruktur aus einem größeren Komplex. "Dieses Prinzip stößt in absehbarer Zukunft an seine Auflösungsgrenzen", erklärt Prof. Müller. "Komplexe Strukturen im Nanometer-Bereich sind nur in den seltensten Fällen realisierbar."

Das an der Natur orientierte Bottom-up-Prinzip, das die Fähigkeiten zur Selbst-Aggregation nutzt, eröffnet hingegen weitreichende Zukunftsperspektiven. Besonders attraktiv ist dabei die Vielzahl der Makromoleküle, die als Grundbausteine infrage kommen. Sie können dazu dienen, bestimmte Funktionalitäten gezielt in die angestrebten Großstrukturen einzuschleusen, wie beispielsweise die Sensibilität für Einflüsse aus der Umgebung (Temperatur, Licht, elektrische und magnetische Felder, etc.) oder die Schaltbarkeit. Denkbare Anwendungen wären die Nanolithographie oder die zeitlich und lokal vorprogrammierte Medikamentenfreisetzung. Auch hier zeigt sich wieder die Analogie zum Bauprinzip der Tier- und Pflanzenzelle, wo unterschiedliche Funktionen in räumlich abgegrenzten Bereichen untergebracht sind.

Makromoleküle, die der Polymerforschung als Träger bestimmter Funktionalitäten zur Verfügung stehen, können hundertmal kleiner als ein Mikrometer sein. Dementsprechend hoch ist die Feinheit von übergeordneten Strukturen, die letztlich aus ihnen hervorgehen. "Zukünftige Technologien – wie etwa maßgeschneiderte künstliche Zellen, Transistoren oder Elemente für die Mikro-/Nano-Robotik – können von dieser geringen Auflösungsgrenze erheblich profitieren", erklärt Prof. Müller. "Für unsere in 'Nature' vorgestellten Forschungsergebnisse zeichnen sich derzeit zwar noch keine sofortigen Anwendungen ab. Aber je besser wir die Bottom-up-Prozesse verstehen lernen, die von Molekülen im Nanometerbereich zu höheren Hierarchie-Ebenen im Mikrometerbereich führen, desto greifbarer werden darauf basierende neue Technologien." Die Raupenmizellen sind denn auch keineswegs die einzigen Großstrukturen, die sich aus den durch Selbst-Aggregation gebildeten Nanopartikeln herstellen lassen. "Diese weichen Nanopartikel können zum Beispiel auch mit anorganischen oder biologischen Nano- und Mikropartikeln kombiniert werden, sodass bisher unbekannte Funktionsmaterialien entstehen. Die Kombinationsmöglichkeiten sind schier endlos", so Prof. Müller.

Veröffentlichung:

André H. Gröschel, Andreas Walther, Tina I. Löbling, Felix H. Schacher, Holger Schmalz, Axel H.E. Müller,
Guided Hierarchical Co-Assembly of Soft Patchy Nanoparticles,
in: Nature, DOI: 10.1038/nature12610
Ansprechpartner für weitere Informationen:
Professor Dr. Axel Müller
Johannes Gutenberg-Universität
D-55099 Mainz.
Tel.: 06131-3922372
E-Mail: axel.mueller@uni-mainz.de
Dr. André Gröschel
Department of Applied Physics
School of Science
Aalto University
FIN-00076 Helsinki
Finnland.
Tel.: +358-50-4346991
E-Mail: andre.groschel@aalto.fi

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics