Gedächtnistraining für Metallstrukturen

Mit dem Rasterionenmikroskop hergestellte Kupfer-Zink Mikrosäulen. INM

Einige Materialien, sogenannte Formgedächtnislegierungen, verändern bei einer Temperaturerhöhung ihre Form. Die Metalle haben sozusagen ein Gedächtnis dafür, in welche Form sie sich bei höherer Temperatur begeben. „Allerdings ist diese Formänderung nicht rückgängig zu machen – einen Schalter erhält man mit diesem Ein-Wege-Effekt noch nicht“, erklärte Andreas Schneider, der Leiter der neuen Gruppe. „Dazu müssen wir das Material trainieren. Das gelingt mit einer geeigneten Kombination aus Wärmebehandlung und Verformung.“

Dann merkt sich das Material die Form bei der höheren und bei der niedrigeren Temperatur. Dieser Zwei-Wege-Gedächtnis-Effekt ermöglicht es, über die Temperatur Oberflächenstrukturen schaltbar zu machen. Damit lassen sich zum Beispiel Reibung und Haftung auf Oberflächen gezielt an- und ausschalten.

Im zweiten Forschungsschwerpunkt untersucht die Gruppe, wie Mikrostrukturen die Belastbarkeit einer Metalloberfläche beeinflussen. „Wir erkennen, dass ein Metall umso belastbarer wird, je kleiner wir die Struktur auf der Oberfläche machen. Viele dünne Säulen tragen ein Tempeldach besser als wenige dicke Säulen“, erklärt der Juniorforscher. Die Arbeitsgruppe untersucht, welche Einflüsse zu diesem Effekt führen und ihn verändern.

Die Mikrostrukturen erzeugen die Wissenschaftler unter anderem mit einem Rasterionenmikroskop. Damit werden Schicht um Schicht kleinste Mengen Metall von der Oberfläche abgetragen. Am Ende ragen Mikrosäulen mit einem festen Durchmesser und einer festen Höhe aus dem Metall heraus. Mit einem Stempel, der von oben auf die Säulen drückt, testen die Wissenschaftler, welchen Kräften die Säulen standhalten, bevor sie nachgeben.

Als Materialien verwendet die Gruppe Metalle mit einer bestimmten kristallographischen Struktur. Die bereits untersuchten Metalle Niob, Wolfram, Tantal und Molybdän verfügen beispielsweise über eine kubisch raumzentrierte Struktur. Auch Materialien, die mit Oxidteilchen verstärkt sind, untersucht die Forschungsgruppe. Es ist bekannt, dass diese Oxidteilchen Metalle belastbarer machen. Die Gruppe untersucht, ob sich dieser Effekt auch im Nano-Mikro-Maßstab bestätigt.

Hintergrund:

Andreas Schneider studierte Materialwissenschaft an der Universität Stuttgart und am Max-Planck-Institut für Metallforschung. Er promovierte mit Auszeichnungbei Eduard Arzt in Stuttgart im Jahr 2010. Schneider erzielte hervorragende Forschungsergebnisse, die sich in zahlreichen Publikationen niederschlagen. Seine exzellente Arbeit bekräftigte den Entschluss der Geschäftsführung, den Nachwuchswissenschaftler als Leiter einer eigenen Juniorforschungsgruppe weiter zu fördern.

Das INM erweitert durch die neue Juniorforschungsgruppe sein Forschungsspektrum hin zum Material Metall. Auch die mechanische Charakterisierung auf der Nano- und Mikro-Skala treibt das INM durch die neue Gruppe voran. Dadurch schlägt es die Brücke von mechanischen Messungen auf atomarer Ebene über die Nano-Skala bis hin zu makroskopischen Größen. Das INM wendet dieses Messverfahren neben Metallen auch auf biologische Materialien an, wie z.B. Perlmutt.

Das INM – Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken betreibt grundlagen- und anwendungsorientierte Materialforschung – vom Molekül bis zur Pilotfertigung. Die Arbeit des INM umfasst in interdisziplinärer Zusammenarbeit die Bereiche Chemische Nanotechnologie, Grenzflächenmaterialien sowie Materialien in der Biologie. Seine Schwerpunkte liegen in der chemischen Synthese und physikalischen Analyse von Oberflächen, von Beschichtungen und von grenzflächenbestimmten Materialien.

Ansprechpartner:
Dr. Andreas Schneider
INM – Leibniz-Institut für Neue Materialien gGmbH
Tel. 0681 9300 312
E-mail: andreas.schneider@inm-gmbh.de

Media Contact

Dr. Carola Jung idw

Weitere Informationen:

http://www.inm-gmbh.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer