Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Fußball-Moleküle unter Oberflächen schieben

09.07.2010
HZB-Forscher beobachten atomare Vorgänge beim Dotieren von Halbleitermaterialien

In der Zeitschrift Advanced Materials stellen sie eine Mikroskopie-Technik vor, mit der sie beobachten können, wie sich einzelne zum Dotieren verwendete Fulleren-Moleküle unter die Graphen-Schicht schieben, die zuvor auf einem Nickel-Substrat abgeschieden wurde.

Fulleren und Graphen, die beiden noch nicht lange bekannten Formen des Kohlenstoffs regen seit ihrer Entdeckung (Fulleren 1970, Graphen 2004) die Phantasie der Forscher an. Insbesondere mit Graphen wollen sie ein neues Kapitel der Elektronik beginnen, da das Halbleitermaterial eines Tages das Schlüsselelement Silizium ablösen könnte. Dazu muss man Graphen - das ist eine einzelne Atomschicht Graphit - mit Fremdatomen dotieren können. Und zwar so, dass die wichtigen Struktureigenschaften des Graphens erhalten bleiben.

Wissenschaftler des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) berichten in der Online-Vorabveröffentlichung der Ausgabe vom 10. August der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201000695) über eine neue Mikroskopie-Technik. Mit ihr können sie zeigen, wie sich einzelne zum Dotieren verwendete Fulleren-Moleküle unter die Graphen-Schicht schieben, die zuvor auf einem Nickel-Substrat abgeschieden wurde.

Graphen ist der erste in zwei Dimensionen stabile Kristall, weil sich die Kohlenstoff-Atome in einer Honigwaben-Struktur aus Sechsecken anordnen. Beim Fulleren kommen noch einige Fünfecke hinzu, weshalb das aus 60 Kohlenstoff-Atomen bestehende Molekül auch als Fußball-Molekül bekannt geworden ist.

Andrei Varykhalov und seine Kollegen vom HZB haben aus Propylen per Gasphasenabscheidung eine dünne Lage Graphen auf einem Nickel-Substrat abgeschieden. Anschließend haben sie einzelne Fulleren-Moleküle zwischen die Nickel-Oberfläche und die Graphenschicht gebracht. Dies gelang durch rasches Erwärmen der Probe auf 400 Grad Celsius und anschließendes kurzes Ausglühen. Die entscheidende Technik, mit der sie das Dazwischenschieben – Interkalation genannt - der Fulleren-Moleküle beobachten konnten, war die Rastertunnelmikroskopie.

Bei dieser Messung wird eine elektrisch leitende Spitze Zeile für Zeile über die ebenfalls leitende Probenoberfläche gefahren. Spitze und Objektoberfläche berühren sich dabei nicht, so dass kein Strom fließt. Erst wenn die Mikroskop-spitze der Probenoberfläche so nah kommt, dass nur wenige Nanometer dazwischen liegen, kommt es zum Tunneleffekt. Das heißt, Elektronen aus der Probenoberfläche und der Spitze treten in Austausch. Wird eine Spannung angelegt, fließt ein Tunnelstrom, der sehr empfindlich auf kleinste Abstandsänderungen reagiert.

Die HZB-Wissenschaftler konnten in ihrem Experiment die Rastertunnelmikro-skopie so betreiben, dass ein deutlicher Kontrast entsteht, sobald die Spitze des Mikroskops die Fulleren-Moleküle unter der Graphen-Oberfläche wahrnimmt. Um die entscheidenden Parameter hierfür zu bekommen, haben sie die Probe am Speicherring BESSY II zunächst mit Synchrotronstrahlung untersucht.

„Mit unserem Abbildungsverfahren können wir ganz universell Interkalationsverbindungen visualisieren“, unterstreicht Andrei Varykhalov die Bedeutung der Experimente. Bei der Entwicklung der neuen Halbleitertechnologie ist ein solches Bildgebungsverfahren Voraussetzung, um neue Bauteile zu entwickeln.

Kontakt:

Dr. Andrei Varykhalov
Abt. Magnetisierungsdynamik
Tel.: 030 / 8062-14888 (bis 11.7.: 6392-8881)
andrei.varykharov@helmholtz-berlin.de
Dr. Oliver Rader
Abt. Magnetisierungsdynamikit
Tel.: 030 / 8062-12950 (bis 11.7.: 6392-2950)
rader@helmholtz-berlin.de
Pressestelle
Dr. Ina Helms
Tel 030 / 8062 4 2034 (bis 11.7.: 8062-2034)
Fax 030 / 8062 4 2998 (bis 11.7.: 8062-2998)
ina.helms@helmholtz-berlin.de
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglich-keiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolar-zellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbei-ten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

Dr. Ina Helms | idw
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie