Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Fußball-Moleküle unter Oberflächen schieben

09.07.2010
HZB-Forscher beobachten atomare Vorgänge beim Dotieren von Halbleitermaterialien

In der Zeitschrift Advanced Materials stellen sie eine Mikroskopie-Technik vor, mit der sie beobachten können, wie sich einzelne zum Dotieren verwendete Fulleren-Moleküle unter die Graphen-Schicht schieben, die zuvor auf einem Nickel-Substrat abgeschieden wurde.

Fulleren und Graphen, die beiden noch nicht lange bekannten Formen des Kohlenstoffs regen seit ihrer Entdeckung (Fulleren 1970, Graphen 2004) die Phantasie der Forscher an. Insbesondere mit Graphen wollen sie ein neues Kapitel der Elektronik beginnen, da das Halbleitermaterial eines Tages das Schlüsselelement Silizium ablösen könnte. Dazu muss man Graphen - das ist eine einzelne Atomschicht Graphit - mit Fremdatomen dotieren können. Und zwar so, dass die wichtigen Struktureigenschaften des Graphens erhalten bleiben.

Wissenschaftler des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) berichten in der Online-Vorabveröffentlichung der Ausgabe vom 10. August der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201000695) über eine neue Mikroskopie-Technik. Mit ihr können sie zeigen, wie sich einzelne zum Dotieren verwendete Fulleren-Moleküle unter die Graphen-Schicht schieben, die zuvor auf einem Nickel-Substrat abgeschieden wurde.

Graphen ist der erste in zwei Dimensionen stabile Kristall, weil sich die Kohlenstoff-Atome in einer Honigwaben-Struktur aus Sechsecken anordnen. Beim Fulleren kommen noch einige Fünfecke hinzu, weshalb das aus 60 Kohlenstoff-Atomen bestehende Molekül auch als Fußball-Molekül bekannt geworden ist.

Andrei Varykhalov und seine Kollegen vom HZB haben aus Propylen per Gasphasenabscheidung eine dünne Lage Graphen auf einem Nickel-Substrat abgeschieden. Anschließend haben sie einzelne Fulleren-Moleküle zwischen die Nickel-Oberfläche und die Graphenschicht gebracht. Dies gelang durch rasches Erwärmen der Probe auf 400 Grad Celsius und anschließendes kurzes Ausglühen. Die entscheidende Technik, mit der sie das Dazwischenschieben – Interkalation genannt - der Fulleren-Moleküle beobachten konnten, war die Rastertunnelmikroskopie.

Bei dieser Messung wird eine elektrisch leitende Spitze Zeile für Zeile über die ebenfalls leitende Probenoberfläche gefahren. Spitze und Objektoberfläche berühren sich dabei nicht, so dass kein Strom fließt. Erst wenn die Mikroskop-spitze der Probenoberfläche so nah kommt, dass nur wenige Nanometer dazwischen liegen, kommt es zum Tunneleffekt. Das heißt, Elektronen aus der Probenoberfläche und der Spitze treten in Austausch. Wird eine Spannung angelegt, fließt ein Tunnelstrom, der sehr empfindlich auf kleinste Abstandsänderungen reagiert.

Die HZB-Wissenschaftler konnten in ihrem Experiment die Rastertunnelmikro-skopie so betreiben, dass ein deutlicher Kontrast entsteht, sobald die Spitze des Mikroskops die Fulleren-Moleküle unter der Graphen-Oberfläche wahrnimmt. Um die entscheidenden Parameter hierfür zu bekommen, haben sie die Probe am Speicherring BESSY II zunächst mit Synchrotronstrahlung untersucht.

„Mit unserem Abbildungsverfahren können wir ganz universell Interkalationsverbindungen visualisieren“, unterstreicht Andrei Varykhalov die Bedeutung der Experimente. Bei der Entwicklung der neuen Halbleitertechnologie ist ein solches Bildgebungsverfahren Voraussetzung, um neue Bauteile zu entwickeln.

Kontakt:

Dr. Andrei Varykhalov
Abt. Magnetisierungsdynamik
Tel.: 030 / 8062-14888 (bis 11.7.: 6392-8881)
andrei.varykharov@helmholtz-berlin.de
Dr. Oliver Rader
Abt. Magnetisierungsdynamikit
Tel.: 030 / 8062-12950 (bis 11.7.: 6392-2950)
rader@helmholtz-berlin.de
Pressestelle
Dr. Ina Helms
Tel 030 / 8062 4 2034 (bis 11.7.: 8062-2034)
Fax 030 / 8062 4 2998 (bis 11.7.: 8062-2998)
ina.helms@helmholtz-berlin.de
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglich-keiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolar-zellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbei-ten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

Dr. Ina Helms | idw
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Sparsamer abheben dank Leichtbau-Luftdüsen
23.10.2017 | Technische Universität Chemnitz

nachricht Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen
23.10.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie