Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fügen auf Knopfdruck mit maßgeschneiderten Reaktivfolien für unterschiedliche Materialkombinationen

16.10.2012
Müssen zwei Bauteile materialschonend, thermosensitiv, spannungsarm und dazu noch schnell gefügt werden, ist die Wahl der richtigen Wärmequelle entscheidend.
Das Fraunhofer IWS in Dresden hat gemeinsam mit dem Institut für Fertigungstechnik der TU Dresden eine fügezoneninterne Wärmequelle entwickelt, die optimal auf die jeweilige Fügeaufgabe zugeschnitten werden kann. Metalle, Keramiken, Halbleiter, Diamant und neuerdings sogar Polymere lassen sich mit dieser Methode wirkungsvoll verbinden.

Bei der in Dresden entwickelten Methode wird zwischen die beiden zu fügenden Bauteile eine Reaktivfolie eingelegt und durch einen elektrischen Impuls aktiviert. Vor der Aktivierung liegen in der Folie viele Einzellagen aus mindestens zwei verschiedenen Materialien vor. Durch die Aktivierung der Folie wird eine chemische Reaktion in Gang gesetzt, bei der kurzzeitig und lokal begrenzt Energie in Form von Wärme freigesetzt wird. Diese Energie wird genutzt, um innerhalb von Millisekunden eine Verbindung der Bauteile herzustellen ohne dass diese sich signifikant erwärmen. Wie die nachfolgenden Beispiele zeigen, könnte das Fügen auf Knopfdruck damit in naher Zukunft Realität werden.

Die Anwendung der Reaktivfolie zum Fügen ist bisher für das Weichlöten folgender Materialkombinationen demonstriert worden: Messing-Messing, Keramik-Silizium, Invar-Silizium, Silizium-Silizium, Keramik-Edelstahl. Die notwendigen Lote mit Schmelztemperaturen im Bereich von 200 - 300 °C wurden wahlweise auf die Folie oder auf die Bauteile aufgebracht.

Elektrische Zündung einer Reaktivfolie
Foto: Fraunhofer IWS Dresden


Fügung eines Si-Wafers mit Marcor-Glaskeramik unter Anwendung von Reaktivfolie
Foto: Fraunhofer IWS Dresden

Eine wesentliche Weiterentwicklung der reaktiven Fügetechnik wurde durch die Verdopplung der von den Reaktivfolien bereit gestellten Energiemenge erzielt. Somit können nunmehr auch Lote mit Schmelztemperaturen bis knapp oberhalb von 700 °C genutzt werden. Dies erlaubt das Fügen von Bauteilen, die im Einsatzfall einer hohen Temperaturbelastung unterliegen. Darüber hinaus lassen sich mit derartigen Loten auch die Festigkeiten der Verbindungen verbessern.

Innerhalb kürzester Zeit konnten zudem bemerkenswerte Resultate beim Fügen von Polymeren (Kunststoffe, Plastik) mit Reaktivfolien erzielt werden. Hier dient die von den Folien bereit gestellte Energie dazu, die Oberflächen der Polymere direkt aufzuschmelzen, sodass anschließend ein Verschweißen der Polymerbauteile erfolgt. Dass sich die von den Folien gelieferte Wärmemenge präzise durch deren Nanoschichtaufbau steuern lässt, wirkt sich bei diesem Anwendungsfall besonders vorteilhaft aus. So kann einerseits ein Verbrennen der Polymere vermieden und andererseits eine definierte Flüssigphase erzeugt werden.

Ziel kommender Arbeiten ist es, auch Lote mit Schmelztemperaturen oberhalb von 1000 °C nutzbar zu machen. Damit würde insbesondere für das Fügen von Keramiken ein sehr interessanter Temperaturbereich erreicht.

Diese und weitere fügetechnische Innovationen werden am 17. und 18. Oktober 2012 beim ersten Fügetechnischen Symposium „Tailored Joining“ im Internationalen Congress Centrum (ICC) Dresden präsentiert (www.iws.fraunhofer.de/tailoredjoining). Das Symposium wird Besuchern einen Überblick zu modernen Fügeverfahren geben, Verfahrens-Neuentwicklungen zeigen sowie besonders einprägsame Anwendungen in kompakter Form vorstellen.

Im Vorfeld des Fügetechnischen Symposiums "Tailored Joining" findet im ICC Dresden das Lasersymposium FiSC 2012 statt (www.lasersymposium.de). Namhafte Vertreter aus Industrie und Forschung stellen einem internationalen Publikum ihre Ergebnisse im Bereich der Laserentwicklung und Systemtechnik sowie Anwendererfahrungen beim Einsatz brillanter Strahlquellen vor.

Des Weiteren laden die Veranstalter herzlich zum Innovationsabend für mitteldeutsche Unternehmen am 17.10.2012 in das Fraunhofer IWS ein (www.iws.fraunhofer.de/innovationsabend). Den Gästen bieten sich hervorragende Möglichkeiten einen Einblick in die modernen Labore des Fraunhofer IWS zu bekommen. Eindrucksvolle Vorführungen zeigen die vielfältigen Forschungsmöglichkeiten und wirtschaftlichen Perspektiven auf.

Ihre Ansprechpartner für weitere Informationen:
Dr. Stefan Braun
Gruppenleiter Röntgen- und EUV-Optik
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Winterbergstr. 28
01277 Dresden
Telefon +49 351 83391-3432
Fax +49 351 83391-3300
stefan.braun@iws.fraunhofer.de
Dr. Ralf Jäckel
Presse und Öffentlichkeitsarbeit
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Winterbergstr. 28
01277 Dresden
Telefon +49 351 83391-3444
Fax +49 351 83391-3300
ralf.jaeckel@iws.fraunhofer.de
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/tailoredjoining
http://www.lasersymposium.de
http://www.iws.fraunhofer.de/innovationsabend

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik