Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer ISE weiht neues Labor für Silicium-Materialforschung ein

21.10.2008
SIMTEC – Silicium Material Technologie und Evaluationscenter

Mehr als 90 Prozent aller Solarzellen bestehen aus dem Halbleitermaterial Silicium. Der Engpass in der Produktion von hochreinem Silicium hat zu vielen Aktivitäten rund um dieses Ausgangsmaterial geführt. Neben der Erweiterung der Produktionskapazitäten seitens der Industrie gehen auch Solarzellenhersteller und Forschung vermehrt neue Wege in der Nutzung und Optimierung des Materials.

Vor diesem Hintergrund verstärkt das Fraunhofer ISE seine Aktivitäten auf dem Gebiet der Materialforschung. Ergänzt durch das neue Labor SIMTEC – Silicium Material Technologie und Evaluationscenter bedient das Institut jetzt sämtliche Prozessschritte der solaren Wertschöpfungskette – vom Material bis zum Modul – mit angewandter Forschung.

Die neue Einrichtung SIMTEC widmet sich der Silicium- Kristallisation und der Wafertechnologie sowie der kristallinen Silicium-Dünnschichttechnologie. Dabei reicht die Bandbreite von der Arbeit mit verschiedenen Ausgangsformen des Siliciummaterials über die Kristallisation von multikristallinem Silicium, Blocksägen und Wafering bis hin zur Epitaxie von kristallinem Silicium für Dünnschicht-Waferäquivalente – einer neuen Technologie im Bereich der Photovoltaik.

»Auf dem langen Weg vom Rohsilicium bis zum fertigen Solarmodul stellt die Kristallisation von Siliciumblöcken einen zentralen Arbeitsschritt dar«, so Dr. Stefan Reber, der am Fraunhofer ISE die Gruppe Kristalline Silicium-Materialien und Dünnschichtsolarzellen leitet, »hier werden quasi die Weichen für den Wirkungsgrad einer Solarzelle gestellt. Mit SIMTEC verfügen wir jetzt über die notwendige Ausstattung, um intensiv die heutigen und zukünftigen Themen auf der Materialseite zu bearbeiten«. Hierzu zählt auch die Betrachtung des kostengünstigen metallurgischen Siliciums, um dieses – nach Reduzierung seiner metallischen Verunreinigungen – für die Produktion von Solarzellen einsetzen zu können. Neben der Kristallisation und dem Sägen von Wafern befassen sich die Freiburger Forscher im SIMTEC auch mit kristalliner Silicium-Dünnschichttechnologie.

Diese verspricht einen Brückenschlag zwischen den hohen Wirkungsgraden der herkömmlichen Wafertechnologie und den geringen Materialverbräuchen der Dünnschichttechnologie, bei deutlich niedrigeren Herstellkosten. »Im neuen, 600 m2 großen Labor des SIMTEC können wir den zentral erforderlichen Prozess dieser Technologie, die kristalline Silicium-Abscheidung, in allen Aspekten bis hin zur Produktionstauglichkeit untersuchen und optimieren.« Dadurch will die Arbeitsgruppe um Stefan Reber die Marktreife der Technologie, nach fast zwei Jahrzehnten Forschung und Entwicklung, in den nächsten beiden Jahren erreichen.

Die Einrichtung des neuen Labors SIMTEC wird vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) unterstützt. Die Projektarbeiten werden aus Mitteln der Fraunhofer-Gesellschaft gefördert.

Ansprechpartner für weitere Informationen:
Projektleiter:
Dr. Stefan Reber, Fraunhofer ISE
Tel. +49 (0) 7 61/45 88-56 34
Fax +49 (0) 7 61/45 88-96 34
E-Mail: Stefan.Reber@ise.fraunhofer.de

Karin Schneider | Fraunhofer ISE
Weitere Informationen:
http://www.ise.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen