Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritt für die Knochen-Forschung: Hochauflösendes Verfahren zur Nano-Computertomographie entwickelt

23.09.2010
Ein neuartiges Nano-Tomographieverfahren, das von einem Team aus Forschern der Technischen Universität München (TUM), des Paul Scherrer Instituts (PSI) und der ETH Zürich entwickelt wurde, erlaubt erstmals computertomographische Untersuchungen feinster Strukturen mit einer Auflösung im Nanometerbereich.

Mit Hilfe der neuen Methode können etwa dreidimensionale Innenansichten fragiler Knochenstrukturen erstellt werden. Die ersten mit diesem Verfahren erzielten Nano-CT-Bilder werden am 23. September 2010 in der renommierten Fachzeitschrift Nature veröffentlicht. Die neue Technik kann Lebens- und Materialwissenschaften gleichermaßen voranbringen.

Osteoporose, auch Knochenschwund genannt, ist eine der häufigsten Erkrankungen des alternden Knochens: In Deutschland ist etwa ein Viertel der Bevölkerung über 50 Jahre davon betroffen. Bei den Patienten schrumpft die Knochensubstanz übermäßig rasch, damit steigt das Risiko für Brüche deutlich. In der klinischen Forschung wird Osteoporose bisher fast ausschließlich über die Messung einer allgemein verringerten Knochendichte bestimmt. Diese sagt jedoch wenig über die damit verbundenen und ebenso wichtigen lokalen Struktur- und Knochendichte-Änderungen aus. Franz Pfeiffer, TUM-Professor für Biomedizinische Physik und Leiter des Forscherteams, hat das Dilemma gelöst: „Mit unserem neu entwickelten Nano-CT-Verfahren ist es jetzt möglich, die Struktur- und Dichte-Änderungen des Knochens hochaufgelöst und in 3D darzustellen. Damit kann man die der Osteoporose zugrunde liegenden Strukturänderungen auf der Nanoskala erforschen und bessere Therapieansätze entwickeln.“

Pfeiffers Team hat bei der Entwicklung auf der Röntgen-Computertomographie (CT) aufgebaut. Ihr Prinzip ist seit langem bekannt – CT-Geräte werden im Krankenhaus und in der Arztpraxis tagtäglich zur diagnostischen Durchleuchtung des menschlichen Körpers verwendet. Hierbei wird der Körper mit Röntgenstrahlen durchleuchtet. Ein Detektor misst dabei unter verschiedenen Winkeln, wie viel Röntgenstrahlung jeweils absorbiert wird. Im Prinzip werden einfach Röntgenbilder aus verschiedenen Richtungen aufgenommen. Aus einer Vielzahl solcher Aufnahmen können dann mittels Bildverarbeitung digitale 3D-Bilder des Körperinneren erzeugt werden.

Die neu entwickelte Methode misst nun für jeden Beleuchtungswinkel nicht nur die gesamte vom untersuchten Objekt absorbierte Intensität, sondern auch die Teile des Röntgenstrahls, die in verschiedene Richtungen abgelenkt – in Physikersprache „gestreut“ – werden. Diese erzeugen für jeden Punkt ein Streubild, das zusätzliche Informationen über die genaue Nanostruktur liefert, da die Röntgenstreuung gerade auf allerkleinste Strukturänderungen sensitiv ist. „Da wir dabei sehr viele Einzelbilder extrem präzise aufnehmen und verarbeiten müssen, war bei der Implementierung des neuen Verfahrens die Verwendung hochbrillanter Röntgenstrahlung und schneller, rauscharmer Pixel-Detektoren besonders wichtig – beides steht an der Synchrotron Lichtquelle Schweiz (SLS) zur Verfügung“, so Oliver Bunk, der an der vom schweizerischen PSI betriebenen Synchrotronlichtquelle den entsprechenden Experimentierplatz mit aufgebaut hat.

Die Streubilder werden anschließend mit einem Algorithmus verarbeitet, der von dem Team entwickelt wurde. TUM-Forscher Martin Dierolf, Erstautor des Nature-Artikels, erklärt: „Wir haben einen Bildrekonstruktionsalgorithmus entwickelt, der aus den über hunderttausend Streubildern ein hochaufgelöstes dreidimensionales Bild der Probe errechnet. Dabei berücksichtigt der Algorithmus nicht nur die klassische Röntgenabsorption, sondern die wesentlich sensitivere Beeinflussung der Phase der Röntgenwellen.“ Exemplarisch wurde mit der neuen Technik die mit 25 Mikrometern härchenfeine Knochenprobe einer Labormaus untersucht – mit überraschend exakten Ergebnissen. Die so genannten Phasenkontrast-CT-Aufnahmen stellen selbst kleinste Dichteunterschiede in der Knochenprobe extrem genau dar: Querschnitte durch Hohlräume, in denen Knochenzellen eingebettet sind, und deren rund 100 Nanometer feines Verbindungsnetzwerk sind gut erkennbar.

„Das neue Nano-CT-Verfahren erreicht zwar nicht die Ortsauflösung, die derzeit in der Elektronenmikroskopie möglich ist, kann aber – aufgrund des hohen Durchdringungsvermögens von Röntgenstrahlung – dreidimensionale Tomographiebilder von Knochenproben liefern“ kommentiert Roger Wepf, Leiter des Elektronenmikroskopiezentrums (EMEZ) an der ETH Zürich. „Darüber hinaus zeichnet sich das neue Nano-CT-Verfahren durch seine hohe Genauigkeit in der Knochendichtebestimmung aus, welche gerade für die Knochenforschung von entscheidender Bedeutung ist.“ Mithilfe des Verfahrens wird man insbesondere die Frühphase der Osteoporose-Erkrankung genauer studieren sowie Behandlungserfolge verschiedener Therapien in klinischen Studien evaluieren können.

Aber die neue Technik ist auch außerhalb der Medizin sehr nützlich: Weitere Anwendungsfelder liegen in der Entwicklung neuer Werkstoffe in den Materialwissenschaften oder in der Charakterisierung von Halbleiterbauelementen. Schließlich lässt sich das Nano-CT-Verfahren auch auf neuartige, laser-basierte Röntgenquellen übertragen, so wie sie derzeit im Rahmen des Exzellenzclusters „Munich-Centre for Advanced Photonics“ (MAP) und am neu bewilligten Großforschungsprojekt „Centre for Advanced Laser Applications“ (CALA) auf dem TUM-Campus Garching bei München entwickelt werden.

Originalpublikation:

Martin Dierolf, Andreas Menzel, Pierre Thibault, Philipp Schneider, Cameron M. Kewish, Roger Wepf, Oliver Bunk, Franz Pfeiffer: “Ptychographic X-Ray Computed Tomography at the Nano-Scale”. Nature, 23. September 2010 – DOI: 10.1038/nature09419

Kontakte:

Prof. Dr. Franz Pfeiffer
Lehrstuhl für Biomedizinische Physik
Technische Universität München
James-Franck-Straße 1, 85748 Garching, Germany
Tel.: +49 89 289 12551, Fax: +49 89 289 12548
E-Mail: nelly.de.leiris@mytum.de
Dr. Oliver Bunk
Labor für Makromoleküle und Bioimaging
Paul Scherrer Institut
5232 Villigen PSI, Schweiz
Tel.: +41 56 310 3077
E-Mail: oliver.bunk@psi.ch
Internet: http://www.psi.ch
Dr. Roger Albert Wepf
EMEZ – Electronen Microscopy ETH Zürich
ETH Zürich
Wolfgang-Pauli-Str. 16
8093 Zürich, Schweiz
Tel: +41 44 633 45 58
E-Mail: roger.wepf@emez.ethz.ch
Internet: http://www.ethz.ch

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.physik.tu-muenchen.de/lehrstuehle/E17
http://users.physik.tu-muenchen.de/gu45ten/franz_pfeiffer/bone_nanoCT.mov
http://mediatum.ub.tum.de/?cunfold=997485&dir=997485&id=997485

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften