Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung an der Oberfläche

14.09.2010
Er ist gerade mal 34 Jahre alt und hat schon einen Lehrstuhl an der Uni Würzburg inne: Jürgen Groll erforscht neue Materialien, die in der Medizin zum Einsatz kommen sollen. Die Produkte, die Groll entwickelt, können weitaus mehr als nur kranke Gewebe ersetzen.

Unter 2000 Neugeborenen ist in der Regel eines dabei, dessen Zwerchfell ein Loch aufweist. Ist dieses Loch sehr groß, können sich die Bauchorgane in den Brustkorb ausdehnen. Sie verhindern dann, dass sich die Lunge ordnungsgemäß entfaltet.

Für die Säuglinge ist dies ein lebensbedrohlicher Zustand, der durch eine Operation behoben werden muss. Zurzeit schließen Mediziner die Öffnung mit einer teflonartigen Folie. Der Nachteil dabei: Weil die kleinen Patienten wachsen, muss auch die Folie regelmäßig bei weiteren Operationen durch ein größeres Exemplar ersetzt werden. Das zu ändern, ist ein Projekt, an dem Jürgen Groll forscht.

„Wir haben eine Art Vlies entwickelt, das aus extrem dünnen Polymerfäden besteht“, erklärt Groll. Der Trick dabei: Groll und seine Mitarbeiter sind in der Lage, dieses Vlies gezielt mit besonderen Eigenschaften zu versehen. Im Idealfall sorgt das Vlies dann dafür, dass sich auf seiner einen Seite Muskelzellen ansiedeln, die das Zwerchfellloch schließen, und auf der anderen Seite ein Verwachsen mit den Organen in der Bauchhöhle verhindert wird. „Zusätzlich kann man dem Vlies noch Wirkstoffe mitgeben, die beispielsweise die Narbenbildung regulieren und dafür sorgen, dass das neue Gewebe gleichmäßig wächst“, sagt Groll.

Am Ende soll dann ein funktionstüchtiges Zwerchfell stehen, das ausschließlich aus körpereigenen Zellen aufgebaut ist und ganz normal funktioniert. Was auch bedeutet: Es wächst mit. Dem Kind bleiben somit weitere Operationen erspart. Und das Vlies? „Das verschwindet. Die Polymerfäden sind so konstruiert, dass sie nach einer definierten Zeitspanne von alleine abgebaut werden“, sagt Groll.

Funktionswerkstoffe und ihre Einsatzgebiete

Funktionswerkstoffe nennt man solche innovativen Materialien, die – wie ihr Name sagt – in der Lage sind, neue und zusätzliche Funktionen zu übernehmen. Sie kommen in der Elektronik zum Einsatz und in der Optik; sie finden Verwendung in der Informationstechnologie, im Maschinen- und Anlagenbau, in der Verkehrstechnik. Und in der Medizin.

Ihrer Erforschung widmet sich in Würzburg ein Team von Wissenschaftlern aus den unterschiedlichsten Fachbereichen von der Physik über die Chemie bis zu den Lebenswissenschaften. Gemeinsam bietet die Gruppe den in Deutschland einmaligen Bachelor-Studiengang „Technologie der Funktionswerkstoffe“ mit nachfolgendem Master-Studium an. Jürgen Groll verstärkt das Team ab sofort. Der Chemiker entwickelt biomimetische Kunststoffe für den Einsatz in der Medizin.

„Kunststoffe finden in der Medizin vielfach Verwendung“, sagt Groll.
Beispielsweise auf den Kontaktflächen künstlicher Hüftgelenke, in Gefäßprothesen oder als Netze, die Leistenbrüche verschließen. Grolls Spezialgebiet ist es, die Oberflächen dieser Kunststoffe so zu verändern, dass sie besondere Eigenschaften annehmen.

Ein Beispiel: „Wir können aus Fasern, die weniger als ein tausendstel Millimeter stark sind, ein dreidimensionales Netz bilden. Gleichzeitig ist dieses Netz durch seine speziellen Oberflächeneigenschaften in der Lage, nur bestimmte Zellen, beispielsweise Hautzellen, anzulocken“, erklärt der Wissenschaftler. Die Netze sollen somit helfen, große Wunden mit körpereigenem Material zu schließen; die Fasern selbst werden wiederum nach einer gewissen Zeit abgebaut. Fernziel von Grolls Arbeit ist es, Netze zu entwickeln, die als Träger für alle möglichen Arten von Geweben dienen und somit – im Idealfall – sogar neue Organe aufbauen.

Würzburg – ein guter Ort für Forschung und Lehre

Seit knapp sechs Wochen ist Jürgen Groll jetzt an der Universität Würzburg. „Würzburg bietet ein hervorragendes Umfeld für meine Arbeit. Die Uni besitzt ein großes Potenzial“, sagt er. Vor allem die starke interdisziplinäre Ausrichtung gefällt dem Wissenschaftler. „Bei der Entwicklung von Biomaterialien braucht man sowohl Experten, die etwas vom Material verstehen, als auch Experten, die sich mit Biologie und Medizin auskennen“, sagt er. Verschiedene Disziplinen und Fakultäten müssten eng zusammenarbeiten, um auf diesem Gebiet erfolgreich zu sein. „Das fängt schon damit an, dass ein Mediziner häufig eine andere Herangehensweise hat und ganz andere Fragen stellt als beispielsweise ein Chemiker“, so Groll. Arbeiten beide zusammen, könne der eine viel von dem anderen lernen.

In Würzburg ist der Wille zur Zusammenarbeit vorhanden – davon ist Groll überzeugt. Das beweise schließlich schon die Tatsache, dass er als Chemiker auf einen Lehrstuhl an einer Klinik berufen wurde.

Im Studiengang „Technologie der Funktionswerkstoffe“ wird Groll ab dem kommenden Wintersemester seinen Forschungsbereich einbringen. Dann werden Vorlesungen über Biokompatibilität und Polymere auf dem Stundenplan stehen; im Masterstudiengang wird er künstliche Zellträger und den Einsatz von Nanotechnologie in der Biomedizin vorstellen.

Jürgen Grolls Werdegang

Jürgen Groll wurde 1976 geboren; aufgewachsen ist er in Oberstotzingen. Von 1995 bis 2000 hat er an der Universität Ulm Chemie studiert; 2004 wurde er an der RWTH Aachen promoviert. Anschließend forschte er als Senior Researcher bei der Sustech GmbH in Darmstadt und am DWI an der RWTH Aachen als Arbeitsgruppenleiter in den Bereichen Polymerchemie und Biomaterialien. Seit August 2010 hat Groll an der Universität Würzburg den Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde inne.

Für seine Arbeiten wurde Groll mehrfach ausgezeichnet, unter anderem mit dem Reimund-Stadler-Habilitationspreis und dem Bayer Early Excellence in Science Award.

Kontakt: Professor Jürgen Groll, T: (0931) 201-73510, E-Mail: juergen.groll@fmz.uni-wuerzburg.de

Der Studiengang „Technologie der Funktionswerkstoffe“

Drei Jahre dauert das TecFun-Studium bis zum Bachelor-Abschluss, der aufbauende Master-Studiengang zwei Jahre. Am Anfang stehen vor allem Mathe, Physik und Chemie auf dem Stundenplan, später kommen Spezialgebiete wie Biokompatible Werkstoffe und biomedizinische Anwendungen dazu. Die Berufsaussichten für Absolventen technischer Fächer sind sehr gut. Vor allem interdisziplinäre Absolventen werden in den kommenden Jahren stark gefragt sein, wie verschiedene Prognosen sagen. Wer sich für den Studiengang bewerben will, hat jetzt noch die Gelegenheit: Bewerbungen im Losverfahren sind vom 15. bis 30. September möglich.

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ballungsräume Europas

26.04.2017 | Veranstaltungsnachrichten

Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen

26.04.2017 | HANNOVER MESSE

Plastik – nicht nur Müll

26.04.2017 | Ökologie Umwelt- Naturschutz