Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher filmen Schockwelle in Diamant

18.06.2015

Röntgenlaser eröffnet neue Möglichkeiten in der Materialforschung

Mit ultrakurzen Röntgenblitzen haben Forscher Schockwellen in Diamanten gefilmt. Die Studie unter Leitung von DESY-Wissenschaftlern eröffnet neue Möglichkeiten zur Untersuchung von Materialeigenschaften. Dank der extrem hellen und kurzen Röntgenblitze konnten die Forscher die rasante Dynamik der Schockwelle sowohl mit hoher räumlicher als auch mit hoher zeitlicher Genauigkeit verfolgen. Das Team um DESY-Physiker Prof. Christian Schroer stellt seine Arbeit im Fachblatt „Scientific Reports“ vor.


Lauf der Schockwelle durch den Diamanten. Die Riffelstruktur links stammt vom Probenhalter.

Bild: Andreas Schropp/DESY

„Mit der Untersuchung betreten wir ein neues wissenschaftliches Feld“, betont Hauptautor Dr. Andreas Schropp von DESY. „Erstmals können wir mit Röntgenbildgebung die lokalen Eigenschaften und die Dynamik von Materie unter extremen Bedingungen quantitativ bestimmen.“

Für ihre Pilotstudie hatten die Wissenschaftler Diamanten mit dem derzeit stärksten Röntgenlaser der Welt durchleuchtet, der Linac Coherent Light Source LCLS am US-Beschleunigerzentrum SLAC in Kalifornien. Dabei spannten sie drei Zentimeter lange und knapp 0,3 Millimeter dünne Diamantstifte in einen Probenhalter ein.

Ein starker Infrarotlaser löste eine Schockwelle aus, indem er einen 0,15 milliardstel Sekunden (150 Pikosekunden) kurzen Blitz auf die Schmalseite des Diamanten schoss und dabei eine Leistung von bis zu 12 Billionen Watt (12 Terawatt) pro Quadratzentimeter erreichte. Diese Schockwelle raste mit rund 72.000 Kilometern pro Stunde quer durch den Diamanten.

„Um Schnappschüsse von derart schnellen Prozessen zu machen, sind extrem kurze Belichtungszeiten nötig“, erläutert Schropp. Die LCLS liefert Röntgenblitze, die nur 50 Millionstel einer milliardstel Sekunde (50 Femtosekunden) dauern und die schnellste Bewegungen in einem Standbild einfrieren können. Da die Diamantprobe allerdings bei jeder Aufnahme unter den extremen Bedingungen zerstört wird, mussten die Wissenschaftler das Experiment mehrfach mit gleichartigen Proben wiederholen, wobei sie die Schockwelle jeweils zu einem etwas späteren Zeitpunkt ablichteten. Diese Serie von Standbildern montierten sie schließlich wie ein Daumenkino zu einem Film.

Aus diesem Film konnten die Forscher quantitativ die Dichteänderung aufgrund der Schockwelle ermitteln. Das speziell hierfür entwickelte Röntgenmikroskop ermöglicht die Abbildung von bis zu 500 millionstel Millimeter (500 Nanometer) kleinen Details einer Probe. Zusammen mit der gemessenen Schallgeschwindigkeit lässt sich so der Zustand des Diamanten unter hohen Drücken bestimmen. Ergebnis: Die heftige Schockwelle presst den Diamanten – immerhin eines der härtesten Materialien der Welt – lokal um knapp zehn Prozent zusammen.

Die Pilotstudie bietet neue Einblicke in die Beschaffenheit von Diamant. „Durch ihre außergewöhnlichen physikalischen Eigenschaften sind Diamanten ein Material von anhaltender wissenschaftlicher und technologischer Bedeutung“, sagt Prof. Jerome Hastings vom SLAC. „Zum ersten Mal haben wir auf direktem Weg mit Röntgenstrahlen Schockwellen in Diamanten abgebildet, was neue Perspektiven auf das dynamische Verhalten von Diamant unter Hochdruck eröffnet.“ So ist für Materialforscher insbesondere das bereits in diesen ersten Aufnahmen sichtbare komplizierte Verhalten hinter der vordersten Schockfront von Interesse.

Durch die Weiterentwicklung der Röntgenlaser und eine Optimierung des Detektors lässt sich die räumliche Auflösung nach Erwartung der Forscher noch auf feiner als 100 Nanometer steigern, etwa auch am Europäischen Röntgenlaser European XFEL, der zurzeit vom DESY-Gelände in Hamburg bis ins benachbarte Schenefeld gebaut wird. Die Technik kann dabei dank der durchdringenden Röntgenstrahlung nahezu auf beliebige feste Stoffe, etwa Eisen oder Aluminium, angewendet werden. „Die Methode ist für eine Reihe von Anwendungen in der Materialwissenschaft und bei der Beschreibung physikalischer Prozesse im Inneren von Planeten wichtig“, fasst Untersuchungsleiter Schroer zusammen.

Neben DESY und SLAC waren die Technische Universität Dresden, die Universität Oxford in Großbritannien und das Lawrence Livermore National Laboratory (LLNL) in den USA an der Arbeit beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL; Andreas Schropp, Robert Hoppe, Vivienne Meier, Jens Patommel, Frank Seiboth, Yuan Ping, Damien G. Hicks, Martha A. Beckwith, Gilbert W. Collins, Andrew Higginbotham, Justin S. Wark, Hae Ja Lee, Bob Nagler, Eric C. Galtier, Brice Arnold, Ulf Zastrau, Jerome B. Hastings & Christian G. Schroer; „Scientific Reports”, 2015; DOI: 10.1038/srep11089

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=819&... - Weiteres Bild- und Filmmaterial

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften