Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher filmen Schockwelle in Diamant

18.06.2015

Röntgenlaser eröffnet neue Möglichkeiten in der Materialforschung

Mit ultrakurzen Röntgenblitzen haben Forscher Schockwellen in Diamanten gefilmt. Die Studie unter Leitung von DESY-Wissenschaftlern eröffnet neue Möglichkeiten zur Untersuchung von Materialeigenschaften. Dank der extrem hellen und kurzen Röntgenblitze konnten die Forscher die rasante Dynamik der Schockwelle sowohl mit hoher räumlicher als auch mit hoher zeitlicher Genauigkeit verfolgen. Das Team um DESY-Physiker Prof. Christian Schroer stellt seine Arbeit im Fachblatt „Scientific Reports“ vor.


Lauf der Schockwelle durch den Diamanten. Die Riffelstruktur links stammt vom Probenhalter.

Bild: Andreas Schropp/DESY

„Mit der Untersuchung betreten wir ein neues wissenschaftliches Feld“, betont Hauptautor Dr. Andreas Schropp von DESY. „Erstmals können wir mit Röntgenbildgebung die lokalen Eigenschaften und die Dynamik von Materie unter extremen Bedingungen quantitativ bestimmen.“

Für ihre Pilotstudie hatten die Wissenschaftler Diamanten mit dem derzeit stärksten Röntgenlaser der Welt durchleuchtet, der Linac Coherent Light Source LCLS am US-Beschleunigerzentrum SLAC in Kalifornien. Dabei spannten sie drei Zentimeter lange und knapp 0,3 Millimeter dünne Diamantstifte in einen Probenhalter ein.

Ein starker Infrarotlaser löste eine Schockwelle aus, indem er einen 0,15 milliardstel Sekunden (150 Pikosekunden) kurzen Blitz auf die Schmalseite des Diamanten schoss und dabei eine Leistung von bis zu 12 Billionen Watt (12 Terawatt) pro Quadratzentimeter erreichte. Diese Schockwelle raste mit rund 72.000 Kilometern pro Stunde quer durch den Diamanten.

„Um Schnappschüsse von derart schnellen Prozessen zu machen, sind extrem kurze Belichtungszeiten nötig“, erläutert Schropp. Die LCLS liefert Röntgenblitze, die nur 50 Millionstel einer milliardstel Sekunde (50 Femtosekunden) dauern und die schnellste Bewegungen in einem Standbild einfrieren können. Da die Diamantprobe allerdings bei jeder Aufnahme unter den extremen Bedingungen zerstört wird, mussten die Wissenschaftler das Experiment mehrfach mit gleichartigen Proben wiederholen, wobei sie die Schockwelle jeweils zu einem etwas späteren Zeitpunkt ablichteten. Diese Serie von Standbildern montierten sie schließlich wie ein Daumenkino zu einem Film.

Aus diesem Film konnten die Forscher quantitativ die Dichteänderung aufgrund der Schockwelle ermitteln. Das speziell hierfür entwickelte Röntgenmikroskop ermöglicht die Abbildung von bis zu 500 millionstel Millimeter (500 Nanometer) kleinen Details einer Probe. Zusammen mit der gemessenen Schallgeschwindigkeit lässt sich so der Zustand des Diamanten unter hohen Drücken bestimmen. Ergebnis: Die heftige Schockwelle presst den Diamanten – immerhin eines der härtesten Materialien der Welt – lokal um knapp zehn Prozent zusammen.

Die Pilotstudie bietet neue Einblicke in die Beschaffenheit von Diamant. „Durch ihre außergewöhnlichen physikalischen Eigenschaften sind Diamanten ein Material von anhaltender wissenschaftlicher und technologischer Bedeutung“, sagt Prof. Jerome Hastings vom SLAC. „Zum ersten Mal haben wir auf direktem Weg mit Röntgenstrahlen Schockwellen in Diamanten abgebildet, was neue Perspektiven auf das dynamische Verhalten von Diamant unter Hochdruck eröffnet.“ So ist für Materialforscher insbesondere das bereits in diesen ersten Aufnahmen sichtbare komplizierte Verhalten hinter der vordersten Schockfront von Interesse.

Durch die Weiterentwicklung der Röntgenlaser und eine Optimierung des Detektors lässt sich die räumliche Auflösung nach Erwartung der Forscher noch auf feiner als 100 Nanometer steigern, etwa auch am Europäischen Röntgenlaser European XFEL, der zurzeit vom DESY-Gelände in Hamburg bis ins benachbarte Schenefeld gebaut wird. Die Technik kann dabei dank der durchdringenden Röntgenstrahlung nahezu auf beliebige feste Stoffe, etwa Eisen oder Aluminium, angewendet werden. „Die Methode ist für eine Reihe von Anwendungen in der Materialwissenschaft und bei der Beschreibung physikalischer Prozesse im Inneren von Planeten wichtig“, fasst Untersuchungsleiter Schroer zusammen.

Neben DESY und SLAC waren die Technische Universität Dresden, die Universität Oxford in Großbritannien und das Lawrence Livermore National Laboratory (LLNL) in den USA an der Arbeit beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL; Andreas Schropp, Robert Hoppe, Vivienne Meier, Jens Patommel, Frank Seiboth, Yuan Ping, Damien G. Hicks, Martha A. Beckwith, Gilbert W. Collins, Andrew Higginbotham, Justin S. Wark, Hae Ja Lee, Bob Nagler, Eric C. Galtier, Brice Arnold, Ulf Zastrau, Jerome B. Hastings & Christian G. Schroer; „Scientific Reports”, 2015; DOI: 10.1038/srep11089

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=819&... - Weiteres Bild- und Filmmaterial

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie