Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln erstmals dreifach verdrilltes Molekül

26.05.2014

Dreidimensional und dennoch einseitig: Möbiusbänder, das sind in sich verdrehte Gebilde, bei denen man nicht zwischen Vorder- und Rückseite unterscheiden kann, stellen unsere Vorstellungskraft auf eine harte Probe.

Einem internationalen Forschungsteam unter Leitung des Kieler Chemikers Professor Rainer Herges von der Christian-Albrechts-Universität zu Kiel (CAU) ist es nun gelungen, das weltweit erste dreifach verdrehte Molekül zu bauen. Interessant könnte das Ergebnis für den Bau von Komponenten für die molekulare Elektronik und die Optoelektronik sein. Wie die Wissenschaftler im Fachjournal Nature Chemistry berichten, nutzten sie für das Experiment einen topologischen Trick.


Grafische Darstellung des Möbius-Moleküls

Abbildung/Copyright: Herges/Nature Chemistry

Bereits im Jahr 1858 beschrieben die Mathematiker Johann Benedict Listing und August Ferdinand Möbius unabhängig voneinander zum ersten Mal eine Struktur, die man sich als ein in sich verdrilltes Band mit nur einer Seite und einer Kante vorstellen kann. Seither hat das nach Möbius benannte, nicht orientierbare Band Architekten sowie Künstler inspiriert. Jede und Jeder kann es sich schnell selbst basteln.

Dazu muss lediglich ein Papierstreifen entlang der Längsachse um 180 Grad gedreht und an den Enden zusammengeklebt werden. Schon an diesem einfachen Modell kann man die verwirrenden Eigenschaften der Möbius-Topologie ausprobieren. Wenn man das Band längs durchschneidet, erhält man nicht wie bei einem normalen Band erwartet zwei schmale Bänder, sondern ein einziges mit dem doppelten Durchmesser, welches nun viermal in sich verdrillt ist.

In den sechziger Jahren des letzten Jahrhunderts begannen sich auch Chemiker für diese spezielle Topologie zu interessieren, da theoretische Berechnungen ungewöhnliche Eigenschaften voraus gesagt hatten, die eines der wichtigsten Gesetze in der Chemie in Bezug auf die Stabilität von Molekülen verletzen. Es dauerte aber fast 50 Jahre bis es einer Arbeitsgruppe gelang, ein stabiles einfach verdrilltes Molekül herzustellen und die Vorhersagen zu bestätigen.

Auch hier waren es der Kieler Forscher Rainer Herges und sein Mitarbeiter Dariush Ajami, denen das Kunststück gelang. Schwierig war es deshalb, weil sich Moleküle normalerweise ähnlich wie ein Band aus Pappkarton oder Stahlband einer Verdrillung widersetzen und sich sofort wieder „entdrillen“, wenn man sie an einem Ende „los lässt“. Die Forscher bauten ihr Molekül daher aus zwei Teilen zusammen: einem normalen, bandförmigen Baustein und einer vorgeformten, gürtelförmigen Komponente. Bei der Verschmelzung dieser beiden Komponenten entsteht ein verdrillter Ring, da ein unverdrillter chemisch weniger stabil wäre.

Bei ihrem aktuellen Experiment konnten Herges und sein Team jedoch nicht auf die bewährte Methode zurückgreifen, da zu viel Spannung bei einer dreifachen Verdrillung ein stabiles Molekül verhindert hätte. Die Lösung des Problems lag in einer Alltagsbeobachtung: Um Spannung abzubauen, winden sich verdrehte Bänder um sich selbst. Bestes Beispiel dafür sind verdrillte Telefonkabel oder Gartenschläuche. „Die Zutaten für unser dreifach verdrilltes Möbius-Molekül sind drei spiralförmige Bausteine. Ähnlich Aussehendes finden wir in unserer DNA-Helix“, erklärt Rainer Herges. 

Diese helixförmigen Moleküle sind, anders als verdrillte Bausteine, stabil. Doch zu einem Möbius-Molekül verbinden ließen sich die gewundenen Einheiten nicht so einfach, denn sie sind chiral. Das bedeutet, dass sich das Bild und das Spiegelbild der Moleküle nicht zur Deckung bringen lassen, sich ihr Drehsinn also unterscheidet. Folglich gibt es viele Möglichkeiten, wie sich die Bausteine verbinden lassen. Die Forschenden mussten also zuerst die richtige Kombination herausfinden, um das gewünschte Molekül aus den drei Bauelementen zusammenzusetzen. Das gelang schließlich.

„Mit unserer Strategie ist es letztlich sogar einfacher, dreifach oder sogar noch stärker verdrillte Molekülsysteme zu bauen als einfach verdrillte“, resümiert Herges. Die Kieler Möbius-Moleküle haben ungewöhnliche elektronische und optische Eigenschaften. Sie könnten in der Zukunft ganz praktische Anwendung finden: zum Beispiel als Speichereinheit in Quantencomputern. Solche Quanten-Bits würden die bisherigen Informationen statt als 0 und 1 als topologische Zustände „unverdreht“ und „verdreht“ darstellen. Denn aufgrund ihrer quantenmechanischen Eigenschaften fließt ein angelegter Strom in Möbius-Molekülen umgekehrt zu normalen Ringen herum.

Originalpublikation
Gaston R. Schaller, Filip Topic, Kari Rissanen, Yoshio Okamoto, Jun Shen and Rainer Herges. Design and synthesis of the first triply twisted Möbius annulene. Nature Chemistry; DOI: 10.1038/nchem.1955 (Advance Online Publication)

Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-151-1.jpg
Bildunterschrift: Künstlerische Darstellung des dreifach verdrillten Kieler Möbius-Moleküls als Treppenkonstrukt
Abbildung/Copyright: Herges

http://www.uni-kiel.de/download/pm/2014/2014-151-2.jpg
Bildunterschrift: Grafische Darstellung des Möbius-Moleküls
Abbildung/Copyright: Herges/Nature Chemistry

http://www.uni-kiel.de/download/pm/2014/2014-151-3.jpg
Bildunterschrift: Der Kieler Professor Rainer Herges entwickelte zusammen mit einem Team ein dreifach in sich verdrehtes Molekül.
Foto/Copyright:

Kontakt
Prof. Dr. Rainer Herges
Christian-Albrechts-Universität zu Kiel
Otto Diels-Institut für Organische Chemie
Tel.: 0431/880-2440
E-Mail: rherges@oc.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kleine Strukturen – große Wirkung
21.11.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Transparente Beschichtung für Alltagsanwendungen
20.11.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie