Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln erstmals dreifach verdrilltes Molekül

26.05.2014

Dreidimensional und dennoch einseitig: Möbiusbänder, das sind in sich verdrehte Gebilde, bei denen man nicht zwischen Vorder- und Rückseite unterscheiden kann, stellen unsere Vorstellungskraft auf eine harte Probe.

Einem internationalen Forschungsteam unter Leitung des Kieler Chemikers Professor Rainer Herges von der Christian-Albrechts-Universität zu Kiel (CAU) ist es nun gelungen, das weltweit erste dreifach verdrehte Molekül zu bauen. Interessant könnte das Ergebnis für den Bau von Komponenten für die molekulare Elektronik und die Optoelektronik sein. Wie die Wissenschaftler im Fachjournal Nature Chemistry berichten, nutzten sie für das Experiment einen topologischen Trick.


Grafische Darstellung des Möbius-Moleküls

Abbildung/Copyright: Herges/Nature Chemistry

Bereits im Jahr 1858 beschrieben die Mathematiker Johann Benedict Listing und August Ferdinand Möbius unabhängig voneinander zum ersten Mal eine Struktur, die man sich als ein in sich verdrilltes Band mit nur einer Seite und einer Kante vorstellen kann. Seither hat das nach Möbius benannte, nicht orientierbare Band Architekten sowie Künstler inspiriert. Jede und Jeder kann es sich schnell selbst basteln.

Dazu muss lediglich ein Papierstreifen entlang der Längsachse um 180 Grad gedreht und an den Enden zusammengeklebt werden. Schon an diesem einfachen Modell kann man die verwirrenden Eigenschaften der Möbius-Topologie ausprobieren. Wenn man das Band längs durchschneidet, erhält man nicht wie bei einem normalen Band erwartet zwei schmale Bänder, sondern ein einziges mit dem doppelten Durchmesser, welches nun viermal in sich verdrillt ist.

In den sechziger Jahren des letzten Jahrhunderts begannen sich auch Chemiker für diese spezielle Topologie zu interessieren, da theoretische Berechnungen ungewöhnliche Eigenschaften voraus gesagt hatten, die eines der wichtigsten Gesetze in der Chemie in Bezug auf die Stabilität von Molekülen verletzen. Es dauerte aber fast 50 Jahre bis es einer Arbeitsgruppe gelang, ein stabiles einfach verdrilltes Molekül herzustellen und die Vorhersagen zu bestätigen.

Auch hier waren es der Kieler Forscher Rainer Herges und sein Mitarbeiter Dariush Ajami, denen das Kunststück gelang. Schwierig war es deshalb, weil sich Moleküle normalerweise ähnlich wie ein Band aus Pappkarton oder Stahlband einer Verdrillung widersetzen und sich sofort wieder „entdrillen“, wenn man sie an einem Ende „los lässt“. Die Forscher bauten ihr Molekül daher aus zwei Teilen zusammen: einem normalen, bandförmigen Baustein und einer vorgeformten, gürtelförmigen Komponente. Bei der Verschmelzung dieser beiden Komponenten entsteht ein verdrillter Ring, da ein unverdrillter chemisch weniger stabil wäre.

Bei ihrem aktuellen Experiment konnten Herges und sein Team jedoch nicht auf die bewährte Methode zurückgreifen, da zu viel Spannung bei einer dreifachen Verdrillung ein stabiles Molekül verhindert hätte. Die Lösung des Problems lag in einer Alltagsbeobachtung: Um Spannung abzubauen, winden sich verdrehte Bänder um sich selbst. Bestes Beispiel dafür sind verdrillte Telefonkabel oder Gartenschläuche. „Die Zutaten für unser dreifach verdrilltes Möbius-Molekül sind drei spiralförmige Bausteine. Ähnlich Aussehendes finden wir in unserer DNA-Helix“, erklärt Rainer Herges. 

Diese helixförmigen Moleküle sind, anders als verdrillte Bausteine, stabil. Doch zu einem Möbius-Molekül verbinden ließen sich die gewundenen Einheiten nicht so einfach, denn sie sind chiral. Das bedeutet, dass sich das Bild und das Spiegelbild der Moleküle nicht zur Deckung bringen lassen, sich ihr Drehsinn also unterscheidet. Folglich gibt es viele Möglichkeiten, wie sich die Bausteine verbinden lassen. Die Forschenden mussten also zuerst die richtige Kombination herausfinden, um das gewünschte Molekül aus den drei Bauelementen zusammenzusetzen. Das gelang schließlich.

„Mit unserer Strategie ist es letztlich sogar einfacher, dreifach oder sogar noch stärker verdrillte Molekülsysteme zu bauen als einfach verdrillte“, resümiert Herges. Die Kieler Möbius-Moleküle haben ungewöhnliche elektronische und optische Eigenschaften. Sie könnten in der Zukunft ganz praktische Anwendung finden: zum Beispiel als Speichereinheit in Quantencomputern. Solche Quanten-Bits würden die bisherigen Informationen statt als 0 und 1 als topologische Zustände „unverdreht“ und „verdreht“ darstellen. Denn aufgrund ihrer quantenmechanischen Eigenschaften fließt ein angelegter Strom in Möbius-Molekülen umgekehrt zu normalen Ringen herum.

Originalpublikation
Gaston R. Schaller, Filip Topic, Kari Rissanen, Yoshio Okamoto, Jun Shen and Rainer Herges. Design and synthesis of the first triply twisted Möbius annulene. Nature Chemistry; DOI: 10.1038/nchem.1955 (Advance Online Publication)

Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-151-1.jpg
Bildunterschrift: Künstlerische Darstellung des dreifach verdrillten Kieler Möbius-Moleküls als Treppenkonstrukt
Abbildung/Copyright: Herges

http://www.uni-kiel.de/download/pm/2014/2014-151-2.jpg
Bildunterschrift: Grafische Darstellung des Möbius-Moleküls
Abbildung/Copyright: Herges/Nature Chemistry

http://www.uni-kiel.de/download/pm/2014/2014-151-3.jpg
Bildunterschrift: Der Kieler Professor Rainer Herges entwickelte zusammen mit einem Team ein dreifach in sich verdrehtes Molekül.
Foto/Copyright:

Kontakt
Prof. Dr. Rainer Herges
Christian-Albrechts-Universität zu Kiel
Otto Diels-Institut für Organische Chemie
Tel.: 0431/880-2440
E-Mail: rherges@oc.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie