Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher beobachten Nanopartikel beim Wachsen

27.03.2014

Analyse erlaubt Maßschneidern von Materialien für schaltbare Fenster und Solarzellen

Mit DESYs Röntgenlichtquelle PETRA III haben dänische Forscher das Wachstum von Nanopartikeln live verfolgt.


Aus dem gelösten Ammonium-Meta-Wolframat mit ungeordneter Struktur (links) formen sich Wolfram-Trioxid-Nanopartikel mit geordnerter Struktur (rechts).

Bild: Dipankar Saha/Universität Århus

Die Untersuchung zeigt, wie sich Wolframoxid-Nanopartikel aus einer Lösung bilden. Diese Partikel werden beispielsweise für intelligente Fenster benutzt, die auf Knopfdruck undurchsichtig werden, und kommen auch in bestimmten Solarzellen zum Einsatz.

Das Team um Hauptautor Dr. Dipankar Saha von der Universität Århus stellt seine Beobachtungen im Fachblatt "Angewandte Chemie – International Edition" vor.

Für ihre Untersuchung konstruierten die Wissenschaftler eine spezielle Reaktionskammer, die für Röntgenlicht durchsichtig ist. "Wir benutzen feine Kapillaren aus Saphir oder Quarzglas, die das Röntgenlicht mühelos durchdringt", schildert Forschungsgruppenleiter Prof. Bo Iversen.

In den Kapillaren wandelten die Forscher in Wasser gelöstes sogenanntes Ammonium-Meta-Wolframat bei hohem Druck und hoher Temperatur zu Nanopartikeln um. Mit dem hellen Röntgenlicht von PETRA III konnten die Chemiker in Echtzeit verfolgen, wie aus der Lösung Wolfram-Trioxid-Partikel (WO3) mit einer Größe von rund zehn Nanometern wuchsen.

"Die Röntgenmessungen zeigen, wie das Material aufgebaut ist", sagt Ko-Autorin Dr. Ann-Christin Dippel von DESY, die die Messstation P02.1 betreut, an der die Versuche stattfanden. "Mit unserer Methode gelingt es uns, die Strukturen des Materials auf atomaren Längenskalen anzuschauen. Das Besondere dabei ist, dass sich die Dynamik des Wachstumsprozesses verfolgen lässt", betont Dippel.

"Die verschiedenen Kristallstrukturen, die sich in diesen Nanopartikeln bilden, sind bekannt. Aber jetzt können wir in Echtzeit verfolgen, wie die Umwandlung von Molekülen zu Nanokristallen geschieht. Dabei sehen wir nicht nur, wie der Prozess abläuft, sondern auch, warum sich bestimmte Strukturen bilden."

Auf molekularer Ebene sind die Grund-Baueinheiten von vielen Metall-Sauerstoff-Verbindungen wie Oxiden sogenannte Oktaeder, die von acht gleichen Dreiecken aufgespannt werden. Diese Oktaeder können entweder jeweils an der Ecke verbunden sein oder an einer Kante. Je nach Konfiguration besitzen die resultierenden Verbindungen unterschiedliche Eigenschaften. Das gilt nicht nur für Wolfram-Trioxid, sondern ist grundsätzlich auch auf andere Materialien übertragbar.

Die Oktaeder-Einheiten aus der Lösung wachsen zu den Nanopartikeln heran, wobei ein zehn Nanometer kleines Partikel etwa 25 Oktaeder vereint. "Wir konnten feststellen, dass zunächst jeweils beide Strukturelemente in dem Ausgangsmaterial vorkommen, die Verbindung über Eck und an der Kante", erläutert Saha. "Im Verlauf der Synthese ordnen sich die Oktaeder jedoch um: Je länger man wartet, desto mehr verschwindet die Kantenverbindung, und die Verbindung über Eck wird häufiger. Die Nanopartikel, die in unseren Untersuchungen entstanden sind, haben eine überwiegend geordnete Kristallstruktur."

In der kontinuierlichen industriellen Synthese geht der Prozess dagegen so schnell, dass vor allem Nanopartikel mit gemischten, ungeordneten Strukturen entstehen. "Geordnete Strukturen entstehen, wenn man den Oktaedern Zeit gibt, sich umzuorientieren," berichtet Saha. "Diese Beobachtung können wir beispielsweise benutzen, um bei den Nanopartikeln bestimmte Eigenschaften einzustellen. Und dieses Prinzip lässt sich auch auf andere Nanopartikel übertragen."

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
“In Situ Total X-Ray Scattering Study of WO3 Nanoparticle Formation under Hydrothermal Conditions”; D. Saha et al.; Angewandte Chemie - International Edition (Vol. 53, Nr. 14, 1.4.2014); DOI: 10.1002/anie.201311254 (Online-Vorab am 26.2.2014)

Weitere Informationen:

http://www.desy.de/infos__services/presse/pressemeldungen/2014/pm_270314/index_g... Text, Bilder und Ansprechpartner

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie