Forscher bauen neuartigen 3D-Mikrochip

Speicherriegel: werden in Zukunft dreidimensional (Foto: A.Dreher, pixelio.de)<br>

Forscher der University of Cambridge haben einen neuartigen Speicherchip gebaut, bei dem Information in drei statt nur zwei Dimensionen fließt. Das stellt deutlich effizientere Elektronik in Aussicht.

„Heutige Chips sind in der dritten Dimension sehr verschwenderisch – das Gehäuse ist Millimeter dick, aber es gibt nur eine Schicht aktiver Komponenten im Chip, die nur einige Mikrometer Dicke ausmachen“, erklärt Russel Cowburn, Physikprofessor in Cambridge, gegenüber pressetext. Der neue Ansatz verspricht Mikrochips, die innen viel mehr speichern können, ohne nach außen größer zu werden.

Die heute, Donnerstag, im Magazin Nature vorgestellte Entwicklung kombiniert dazu Spintronik, bei der Information nicht in der Ladung, sondern dem Spin von Elektronen gespeichert wird, mit einem speziellen Aufbau. Dieser kommt dank funktionellen Materialschichten ohne Transistoren aus, um Daten zwischen verschiedenen Ebenen des Chips zu verschieben. „Unser Zugang bedeutet nur einen geringen Kostenzuwachs pro Schicht“, betont dabei Cowburn. Das sei ein Vorteil gegenüber anderen 3D-Chipkonzepten, bei denen die Kosten mit der Zahl der Ebenen deutlich steigt.

Einfach die richtigen Materialien

Um bei einem dreidimensionalen Chip Daten zwischen den einzelnen Ebenen zu verschieben, wäre normalerweise eine Reihe von Transistoren nötig. Doch die damit verbundene Komplexität und der Platzbedarf würde die Vorteile des Übergangs zum 3D-Aufbau weitgehend zunichte machen, so die Forscher.

Daher setzen sie stattdessen auf einen neuen, experimentellen Ansatz namens „Sputtering“. Dabei haben sie auf einem Silizium-Chip wenige Atome dicke Lagen aus drei Materialien aufgebaut. Kobalt- und Platinatome dienen dabei zum Speichern digitaler Information, während Ruthenium-Atome sie zwischen verschiedenen Schichten weiterleiten.

Dass so das Material die Funktion von Transistoren übernimmt, führt unter anderem dazu, dass die Entwicklung sehr kompakt ausfällt. „Unser heute veröffentlichter Demonstrator-Chip hat elf funktionelle Lagen, die insgesamt nur 20 Nanometer dick sind“, so Cowburn. Das Gehäuse müsste somit nicht dicker ausfallen als bei aktuellen Mikrochips, obwohl viel mehr Daten gespeichert werden könnten. Zwar sind Platin und Ruthenium relativ teure Elemente, doch auch das macht dank des neuen Konstruktionsprinzips wenig aus. „Wenn man nur wenige Atome braucht, kann man günstig viele Chips fertigen“, erklärt der Pysiker.

Vielseitiges Potenzial

Der aktuell vorgestellte Spintronik-Chip ähnelt zwar am ehesten einem RAM-Baustein, das Konstruktionsprinzip sollte dem Cambridge-Team zufolge aber auch für andere Elektronikelemente geeignet sein. „Es kann gut sein, dass die ersten realweltlichen Anwendungen nicht im Bereich Speicher liegen, sondern anderswo“, meint Cowburn. Als Beispiel nennt er den medizinischen Bereich. Dem Physiker zufolge arbeitet man an verschiedenen Ansätzen, die Entwicklung wirklich auf den Markt zu bringen. „Ich hoffe, dass wir in den nächsten paar Jahren etwas herausbringen.“

Media Contact

Thomas Pichler pressetext.redaktion

Weitere Informationen:

http://www.cam.ac.uk

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer