Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Formgedächtnis-Kunststoffe erstmals mit umkehrbarer Formänderung

12.07.2013
Teltower Biomaterialforscher haben Kunststoffe entwickelt, die bei einer wählbaren Temperaturschwankung immer wieder in ihrer Form hin- und herwechseln.

Das von seinen Schöpfern als „Polymer-Aktuatoren“ bezeichnete Material überwindet damit eine entscheidende Beschränkung ähnlicher Werkstoffe. Bisher konnten Polymere mit temperaturgesteuertem Formgedächtnis nur ein einziges Mal von einer Form in die andere umschalten. Die Polymer-Aktuatoren wurden jetzt in der Online-Ausgabe der renommierten Zeitschrift PNAS Helmholtz-Zentrum Geesthacht vorgestellt.


In dem Modell einer Fensterjalousie werden die Temperatur-Gedächtnis Polymer-Aktuatoren zum temperaturabhängigen Öffnen und Schließen der Lamellen genutzt. Der Temperaturbereich, in dem sich die Lamellen der Jalousie bewegen, ist programmierbar. Diese Fähigkeit wird als Temperatur-Gedächtnis bezeichnet. HZG


Modell einer Wärmekraftmaschine: Ein Antriebselement (1) aus dem Temperatur-Gedächtnis Polymer entfaltet sich beim Abkühlen und bewegt dabei eine Zahnstange, die wiederum eine Drehscheibe vorantreibt. Beim Erwärmen zieht sich das Antriebselement wieder zusammen und bewegt dabei die Zahnstange zurück. Die Zahnstange wird mittels eines zweiten Elements (2) aus dem reversiblen Temperatur-Gedächtnis Polymer in der Vorwärtsbewegung gegen das Zahnrad gedrückt, in der Rückwärtsbewegung findet eine Entlastung statt. HZG

Das neue Material bedeutet den Durchbruch zu vielfältigen Anwendungsmöglichkeiten – von automatischen Jalousien ohne Strom bis hin zu neuartigen Wärmekraftmaschinen.

„Unsere Aktuatoren können viele hundert Mal die Form ändern, sobald die Umgebungstemperatur bestimmte Schwellenwerte über- und wieder unterschreitet“, sagt Professor Andreas Lendlein, Leiter des Instituts für Biomaterialforschung. Sowohl die Schwellenwerte als auch die Art der Formänderung seien durch die Programmierung der Kunststoffe relativ frei wählbar. Lendlein kann sich deshalb unterschiedlichste Anwendungen mit dem neuen Material vorstellen.

Tilman Sauter, der in Teltow als Doktorand arbeitet, nennt ein alltagsnahes Beispiel: „Man könnte an Sonnen-Jalousien denken, die keine externe Stromversorgung benötigen und dennoch in der Lage sind, die Verdunkelung eines Raumes nur über ihre Erwärmung zu steuern.“

Auch denkbar ist eine Wärme-Kraft Maschine, in der die Aktuatoren die Basis für ein Antriebselement bilden. In einem Experiment demonstrieren die Teltower Wissenschaftler das Funktionsprinzip der Maschine, in der sich bei Erwärmung ein Kunststoff entfaltet und damit eine Antriebseinheit bewegt. Beim Abkühlen wird der Ursprungszustand wieder eingenommen. Über das Temperaturgedächtnis lässt sich die Rotationsgeschwindigkeit der Antriebs-einheit steuern.

Die aktiv-beweglichen Polymere sind auf molekularer Ebene aus Strukturelementen aufgebaut, die über einen sehr breiten Temperaturbereich ihre Beweglichkeit ändern. Um die Akti-vität auf Nanoebene in makroskopische Bewegung umzuwandeln, werden diese Strukturelemente zu einem Teil einem internen Gerüst zugeordnet, welches die Bewegungsgeometrie festlegt und der Bewegung eine Orientierung verleiht. „Der Anteil zwischen Bewegungselementen und formgebenden Elementen kann dabei variiert werden, worüber wir die Bewegung steuern können“, erklärt Dr. Marc Behl, Abteilungsleiter am Teltower Institut.

Marc Behl, Karl Kratz, Ulrich Nöchel, Tilmann Sauter, Andreas Lendlein: Temperature-memory Polymer Actuators, Proceedings of the National Academy of Sciences of the United
States of America (PNAS), 2013, DOI: 10.1073/pnas.1301895110
http://www.pnas.org/content/early/2013/07/03/1301895110.full.pdf+html
Kontakt
Prof. Dr. Andreas Lendlein
Tel. +49 (0) 3328 352 450
E-Mail andreas.lendlein@hzg.de
Helmholtz-Zentrum Geesthacht
Institut für Biomaterialforschung
Kantstr. 55, 14513 Teltow, Germany
Internet: http://biomaterialien.hzg.de
Anfragen für Foto -und Videomaterial
Sabine Benner
Tel. +49 (0) 3328 352 490
E-Mail sabine.benner@hzg.de
Das Helmholtz-Zentrum Geesthacht mit den Standorten Geesthacht in
Schleswig-Holstein und Teltow bei Berlin in Brandenburg ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. und leistet mit seinen langfristig angelegten Schwerpunkten Werkstoff- und Küstenforschung substanzielle Beiträge zur Klärung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft.

Dr. Torsten Fischer | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzg.de/public_relations/press_releases/038487/index_0038487.html.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften