Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FOR 1346: Dynamischer Molekularfeld-Zugang mit Vorhersagekraft für stark korrelierte elektronische Materialien

13.07.2010
Die neu von der DFG genehmigte ortsverteilte Forschergruppe umfasst 25 Experten aus 16 Forschungsinstituten im deutschsprachigen Teil Europas. / Ihr Koordinator und Sprecher ist der Augsburger Physiker Prof. Dr. Dieter Vollhardt.

Wie die Deutsche Forschungsgemeinschaft (DFG) heute mitteilt, hat sie auf ihrer Jahresversammlung in der vergangenen Woche einen vom Augsburger Physik-Theoretiker Prof. Dr. Dieter Vollhardt koordinierten Antrag auf eine ortsverteilte Forschergruppe zum Thema "Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials" in vollem Umfang bewilligt. "Wir - das sind 25 Wissenschaftlerinnen und Wissenschaftler an 16 Forschungsinstituten in Deutschland, Österreich und der Schweiz - freuen uns sehr über die Entscheidung der DFG, die hier grünes Licht für das weltweit erste koordinierte Forschungsvorhaben auf diesem aktuellen Gebiet der theoretischen Festkörperphysik gibt", sagt Vollhardt. Er betont, dass diese Forschergruppe, für die er - unterstützt von seinem Stellvertreter Prof. Dr. Alexander Lichtenstein (Universität Hamburg) - Sprecher ist, zusammen mit den assoziierten Kollaborationspartnern praktisch die gesamte internationale Community repräsentiert, die auf diesem Gebiet arbeitet.

In vielen chemischen Elementen und ihren Verbindungen wechselwirken die Elektronen stark. Bereits geringe Modifikationen äußerer Parameter, z.B. Änderungen der Temperatur, des Druckes, des Magnetfeldes oder der Dotierung, können innerhalb solch "stark korrelierter" Systeme zu gravierenden Veränderungen führen, wie etwa zu extremen Widerstandsänderungen beim Übergang vom Metall in den Isolatorzustand oder bei der Hochtemperatur-Supraleitfähigkeit.

Wechselwirkungen in höchst anwendungsrelevanten Materialien verstehen lernen

Diese ungewöhnlichen Eigenschaften stark korrelierter Materialien sind nicht nur ein Topp-Thema physikalischer Grundlagenforschung, auch für zukünftige technologische Anwendungen sind sie von größtem Interesse: Materialien mit korrelierten Elektronen spielen u. a. für den Bau von Sensoren und Schaltern oder für die Entwicklung neuartiger elektronischer Bauelemente mit neuen nützlichen Funktionalitäten eine große Rolle. Sie sind Gegenstand der intensiven, vom Bund und der DFG geförderten Forschungsarbeiten, die am Institut für Physik und insbesondere am Augsburger "Zentrum für Elektronische Korrelationen und Magnetismus" (EKM) sowie - in Nachfolge des Augsburger Sonderforschungsbereichs 484 - im jüngst eingerichteten Augsburg/München-SFB/Transregio 80 der DFG "From electronic correlations to functionality" seit über zehn Jahren maßgeblich vorangetrieben werden.

Auf der Basis der Dynamischen Molekularfeld-Theorie

Aufgrund der starken Wechselwirkung ihrer quantenmechanischen Teilchen sind elektronisch korrelierte Festkörper theoretisch besonders schwer zu erforschen. Bei den Bemühungen, diese extrem harte Nuss zu knacken, hat die Entwicklung der sogenannten "Dynamischen Molekularfeld-Theorie" (DMFT) zu einem methodischen Durchbruch geführt. Die Grundlagen der DMFT wurden vor zwanzig Jahren von Vollhardt, dem Augsburger Sprecher der neuen DFG-Forschergruppe, und seinem damaligen Doktoranden Walter Metzner - jetzt Direktor am MPI für Festkörperforschung in Stuttgart - gelegt. Vor allem hat die Verknüpfung der DMFT mit herkömmlichen Methoden zur Berechnung der elektronischen Eigenschaften von Festkörpern seit etwa zehn Jahren zu einem völlig neuartigen Verfahren für die realistische Modellierung korrelierter Materialien geführt.

Den erfolgreichen DMFT-Zugang synergetisch weiterentwickeln

Trotz seiner unbestreitbaren Erfolge bedarf dieser neue Zugang einer noch erheblichen Weiterentwicklung, wenn es künftig gelingen soll, auch hochkomplexe elektronisch korrelierte Systeme zu verstehen. Eben diese Weiterentwicklung der Dynamischen Molekularfeld-Theorie ist die Herausforderung, der sich die neue DFG-Forschergruppe stellt: "Wir wollen die Führung in der weltweiten Entwicklung dieses neuen Zugangs durch die koordinierte Kooperation aller einschlägig aktiven Forschergruppen im deutschsprachigen Teil Europas übernehmen", so Vollhardt. Dabei soll letztlich ein neuer Standard in der rechnergestützten Untersuchung korrelierter Festkörper erreicht werden, der es ermöglicht, die Eigenschaften komplexer korrelierter Materialien nicht nur zu berechnen, sondern sogar vorherzusagen.

Langfristige Visionen und ehrgeizige Ziele

Vollhardt rechnet damit, dass einige der ehrgeizigsten Ziele der neuen DFG-Forschergruppe "Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials" vielleicht erst in 10 bis 15 Jahren in erreicht werden können. "Wir haben", so Vollhardt, "in unserem DFG-Antrag eine entsprechend langfristige Vision mit dem ultimativen Ziel formuliert, einen umfassenden theoretischen Zugang zu schaffen, der letztlich sogar physikalische Prozesse erklären kann, wie sie bei Korrelationsphänomenen in organischer Materie auftreten." Die neue DFG-Forschergruppe mache sich nun auf die erste Etappe eines langen Weges.

Mit Höchstnoten bewertet

Lang war auch der Weg, der zur jetzt gefallenen DFG-Entscheidung zugunsten des neun Teilprojekte umfassenden DFG-Forschergruppen-Antrags führte. Die ersten Planungen gehen auf den Jahresbeginn 2008 zurück. Nach einem sehr positiv begutachteten Vorantrag wurden die an der projektierten Forschergruppe beteiligten Wissenschaftler Mitte 2009 aufgefordert, einen Vollantrag an die DFG zu stellen. Dieser Vollantrag wurde im Dezember 2009 eingereicht und Mitte April 2010 an der Universität Augsburg durch ein internationales Fachgremium - mit Wissenschaftlern aus den USA, Schweden, der Schweiz und Deutschland - begutachtet. Das Konzept und die angestrebten Ziele der ortsverteilten Forschergruppe wurden dabei mit Höchstnoten bewertet

2,4 Mio. Euro für die erste dreijährige Förderperiode

Die Forschergruppe ist für insgesamt sechs Jahre geplant. Die heute entschiedene DFG-Bewilligung mit einem Fördervolumen von 2,4 Mio. Euro bezieht sich zunächst auf die ersten drei Jahre (Juli 2009 - Juni 2012).

Ansprechpartner:
Prof. Dr. Dieter Vollhardt
Lehrstuhl für Theoretische Physik III/EKM
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3700
dieter.vollhardt@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/theo3/index.vollha.en.shtml

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie