Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Folienbeschichtung aus Molke

03.01.2012
Fertigprodukte erfreuen sich einer wachsenden Beliebtheit. Geschützt werden die Lebensmittel meist durch Folien, die auf fossilen Rohstoffen basieren. Forscher haben jetzt nicht nur ein Biomaterial aus Molkeprotein entwickelt, sondern auch ein wirtschaftliches Verfahren, mit dem sich Multifunktionsfolien industriell herstellen lassen.

Ob abgepackter Camembert oder eingeschweißter Leberkäse: Ohne die richtige Verpackung geht heute nichts mehr. Die Lebensmittel müssen geschützt werden – vor Sauerstoff, Wasserdampf und chemischen sowie biologischen Einflüssen. Und natürlich sollen sie möglichst lange frisch bleiben. Oft schützen transparente Mehrschichtfolien Nahrung vor externen Einflüssen. Damit möglichst wenig Sauerstoff an das Nahrungsmittel gelangt, werden häufig petrochemisch basierte und teure Polymere wie Ethylen-Vinylalkohol-Copolymer (EVOH) als Barrierematerial verwendet.

Die Gesellschaft für Verpackungsmarktforschung schätzt, dass im Jahr 2014 in Deutschland mehr als 640 Quadratkilometer an Verbundmaterialien mit EVOH als Sauerstoffbarriere-Schicht produziert und verbraucht werden – das entspricht in etwa der Fläche des Bodensees. Da liegt es auf der Hand, ein nachhaltiges Verpackungsmaterial zu entwickeln, das Ökonomie mit Ökologie verbindet. In dem EU-Projekt »Wheylayer« nutzen Forscher Molkeprotein statt petrochemisch basierter Kunststoffe. Die in der Molke natürlich vorkommenden Inhaltsstoffe verlängern die Haltbarkeit von Lebensmitteln, und die Molkeproteinschicht lässt sich biologisch abbauen. Die Forschungsergebnisse sind vielversprechend. »Es ist uns gelungen, eine Formulierung aus Molkeprotein als Basis für die Folienbeschichtung zu gewinnen. Und wir haben einen Prozess entwickelt, mit dem sich die Multifunktionsfolien im industriellen Maßstab wirtschaftlich herstellen lassen«, resümiert Markus Schmid vom Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV in Freising.

Aber lässt sich aus Molke überhaupt eine Barriereschicht fertigen? Zunächst haben die IVV-Wissenschaftler Süß- und Sauer-Molke aufgereinigt und hochreine Molkeprotein-Isolate hergestellt. Um geeignete Proteine mit herausragenden filmbildenden Eigenschaften zu erhalten, haben sie unterschiedliche Modifikationswege geprüft. Damit die gewonnenen Proteine den gewünschten mechanischen Beanspruchungen standhalten, wurden sie mit verschiedenen, ebenfalls biobasierten Weichmachern und anderen Zusätzen in unterschiedlichen Konzentrationen formuliert. »Diese Zusätze sind allesamt zugelassene Substanzen«, sagt Schmid. Die Suche nach der optimalen Formulierung gestaltete sich für die Freisinger Forscher aufwändig: Verwendet man beispielsweise zu viele Weichmacher, sinkt die Barriereeigenschaft gegenüber Wasserdampf und Sauerstoff – das Lebensmittel wäre nicht ausreichend geschützt. Am Ende haben die Freisinger aber nicht nur die optimale Formulierung entwickelt, sondern auch das entsprechende Verfahren, um im industriellen Maßstab wirtschaftlich Molkeproteinfilme auf Kunststofffolien aufzubringen und diese durch andere Technologien mit anderen Folien zu verbinden.

So entstehen Mehrschichtstrukturen mit Barrierefunktionen, die in flexiblen, transparenten Lebensmittelverpackungen eingesetzt werden. »Am IVV haben wir erstmals einen solchen Mehrschichtaufbau im Rolle-zu-Rolle-Verfahren realisiert – eine Weltneuheit«, erklärt Schmid. Unternehmen, die künftig auf Molkeproteine umsteigen wollen, müssen ihre Anlagen nur geringfügig umrüsten. Das entsprechende Patent ist eingereicht.

Die IVV-Forscher sind von der Zukunft der Molkeproteine als alternatives Verpackungsmaterial so überzeugt, dass sie ein eigenes Projekt initiiert haben, das einen Schritt weiter geht: Denn laut einer Umfrage der Gesellschaft für Verpackungsmarktforschung (GVM) steigt nicht nur die Nachfrage nach Folienverbunden, sondern auch der Bedarf an Verbunden, die sich durch Wärme verformen lassen. Deren Volumen wird sich in Deutschland aufgrund der steigenden Nachfrage an Fertigprodukten in Schalen von 76 497 Tonnen im Jahr 2009 auf 93 158 Tonnen im Jahr 2014 erhöhen. Die Wissenschaftler arbeiten mit Hochdruck daran, in thermogeformten Verbunden die EVOH-Schicht durch eine auf Molkeprotein basierende Barriereschicht zu ersetzen. Auch diese alternative Anwendung schont die Ressourcen und verringert den Eintrag von Kohlendioxid in die Atmosphäre.

Dr. Klaus Noller | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/januar/folienbeschichtung.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie