Flüssigkristalle auf dem Weg zur Komplexität

Wie sich Moleküle zu hochkomplexen flüssigkristallinen Strukturen spontan selbstorganisieren können, beschreiben Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) in internationaler Kooperation mit anderen Forschergruppen in einem Artikel in der jüngsten Ausgabe des renommierten Wissenschaftsmagazins „Science“.

Das Forschungsgebiet des Chemikers Prof. Dr. Carsten Tschierske berührt gleich zwei Schwerpunkte der MLU: die Bio- und die Materialwissenschaften. Seine Arbeit ist unter anderem Teil des an der MLU angesiedelten Landesexzellenznetzwerks „Nanostrukturierte Materialien“ und der Forschergruppe 1145. Er interessiert sich vor allem für die Entwicklung neuer Möglichkeiten zur Erzeugung komplexer flüssigkristalliner Strukturen.

Bisher bekannte Flüssigkristalle etwa haben noch sehr einfache Strukturen, weit entfernt zum Beispiel von der Komplexität lebender Systeme. In ihrer Arbeit “Complex multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals” beschreiben die Wissenschaftler rund um Tschierske jetzt, wie sich spezifisch entwickelte „tetraphile“ Moleküle zu hochkomplexen flüssigkristallinen Strukturen spontan selbstorganisieren können.

Alle für die Strukturbildung notwendigen Informationen müssen detailliert in der molekularen Struktur festgeschrieben sein. Dies wird erreicht durch eine gezielte Kombination von in diesem Fall vier (daher ,tetraphil’) verschiedenen miteinander unverträglichen und sich daher gegenseitig abstoßenden Molekülteilen mit anderen, sich gegenseitig anziehenden Teilen.

„So wird die abstoßende Wirkung aufgehoben und es können sich komplexere Strukturen bilden. Derartige Moleküle können sich in Waben organisieren, die von der Struktur her Bienenwaben ähnlich sind“, erläutert Prof. Dr. Carsten Tschierske von der MLU. „Während die allgemein bekannten Bienenwaben alle die gleiche sechseckige Form aufweisen und mit identischem Inhalt, dem Honig, gefüllt sind, bestehen die molekularen Wabenstrukturen jedoch aus periodischen Gittern von Einzelwaben unterschiedlicher Form, sind etwa dreieckig, viereckig oder sechseckig, und haben einen Durchmesser von nur wenigen Nanometern.“

Diese „Nanowaben“ sind zudem unterschiedlich gefüllt. Und: die Waben sind nicht fest wie die Bienenwaben, sondern stellen flüssige dynamische Strukturen dar.

Diese Fließeigenschaft ist entscheidend für einen zweiten Aspekt dieser Arbeit. Dieser zeigt, dass sich bei höheren Temperaturen die Inhalte verschiedener Waben vermischen können. Das verringert die Komplexität, da nun alle Waben wieder die gleichen Inhalte haben können. Die Wissenschaftler konnten nachweisen, dass der Übergang zwischen Strukturen niedriger und höherer Komplexität kontinuierlich ist. Damit ermöglichen diese Arbeiten ein generelles fachübergreifendes Verständnis der Ausbildung von Komplexität in selbstorganisierten Strukturen chemischer Systeme.

Gedanken über mögliche Anwendungen für die neue, soeben in „Science“ publizierte Erkenntnis hält Tschierske zwar für spekulativ: „Wir betreiben Grundlagenforschung, bauen neue Moleküle, um zu sehen: Wie organisieren sie sich?“, beschreibt der hallesche Forscher die Arbeit seines Teams. Einige Beispiele kann er aber dennoch nennen: „Holographische Informationsspeicherung, ‚Nanolithographie’ und die Strukturierung organischer elektronischer Materialien in organischen Solarzellen und Transistoren.“

„Science“-Veröffentlichung
“Complex Multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals”, Science Vol. 331 (2001), Seite 1302 ff.

Autoren: Xiangbing Zeng, Robert Kieffer, Benjamin Glettner, Constance Nürnberger, Feng Liu, Karsten Pelz, Marko Prehm, Ute Baumeister, Harald Hahn, Heinrich Lang, Gillian A. Gehring, Christa H. M. Weber, Jamie K. Hobbs, Carsten Tschierske, Goran Ungar

Ansprechpartner zu dieser Pressemitteilung
Prof. Dr. Carsten Tschierske
Telefon: 0345 55 25664
Email: carsten.tschierske@chemie.uni-halle.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer