Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüssigkristalle auf dem Weg zur Komplexität

11.03.2011
Die Ordnung, wie sie für Kristalle typisch ist, kombiniert mit der Beweglichkeit von Flüssigkeiten ergibt den sogenannten „4. Aggregatzustand“ – Flüssigkristalle. Diese Form der kondensierten Materie ist nicht nur die Voraussetzung für flache Displays (LCDs), welche man heute z.B. in allen Laptop-Computern verwendet.

Wie sich Moleküle zu hochkomplexen flüssigkristallinen Strukturen spontan selbstorganisieren können, beschreiben Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) in internationaler Kooperation mit anderen Forschergruppen in einem Artikel in der jüngsten Ausgabe des renommierten Wissenschaftsmagazins „Science“.

Das Forschungsgebiet des Chemikers Prof. Dr. Carsten Tschierske berührt gleich zwei Schwerpunkte der MLU: die Bio- und die Materialwissenschaften. Seine Arbeit ist unter anderem Teil des an der MLU angesiedelten Landesexzellenznetzwerks „Nanostrukturierte Materialien" und der Forschergruppe 1145. Er interessiert sich vor allem für die Entwicklung neuer Möglichkeiten zur Erzeugung komplexer flüssigkristalliner Strukturen.

Bisher bekannte Flüssigkristalle etwa haben noch sehr einfache Strukturen, weit entfernt zum Beispiel von der Komplexität lebender Systeme. In ihrer Arbeit “Complex multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals” beschreiben die Wissenschaftler rund um Tschierske jetzt, wie sich spezifisch entwickelte „tetraphile“ Moleküle zu hochkomplexen flüssigkristallinen Strukturen spontan selbstorganisieren können.

Alle für die Strukturbildung notwendigen Informationen müssen detailliert in der molekularen Struktur festgeschrieben sein. Dies wird erreicht durch eine gezielte Kombination von in diesem Fall vier (daher ,tetraphil’) verschiedenen miteinander unverträglichen und sich daher gegenseitig abstoßenden Molekülteilen mit anderen, sich gegenseitig anziehenden Teilen.

„So wird die abstoßende Wirkung aufgehoben und es können sich komplexere Strukturen bilden. Derartige Moleküle können sich in Waben organisieren, die von der Struktur her Bienenwaben ähnlich sind“, erläutert Prof. Dr. Carsten Tschierske von der MLU. „Während die allgemein bekannten Bienenwaben alle die gleiche sechseckige Form aufweisen und mit identischem Inhalt, dem Honig, gefüllt sind, bestehen die molekularen Wabenstrukturen jedoch aus periodischen Gittern von Einzelwaben unterschiedlicher Form, sind etwa dreieckig, viereckig oder sechseckig, und haben einen Durchmesser von nur wenigen Nanometern.“

Diese „Nanowaben“ sind zudem unterschiedlich gefüllt. Und: die Waben sind nicht fest wie die Bienenwaben, sondern stellen flüssige dynamische Strukturen dar.

Diese Fließeigenschaft ist entscheidend für einen zweiten Aspekt dieser Arbeit. Dieser zeigt, dass sich bei höheren Temperaturen die Inhalte verschiedener Waben vermischen können. Das verringert die Komplexität, da nun alle Waben wieder die gleichen Inhalte haben können. Die Wissenschaftler konnten nachweisen, dass der Übergang zwischen Strukturen niedriger und höherer Komplexität kontinuierlich ist. Damit ermöglichen diese Arbeiten ein generelles fachübergreifendes Verständnis der Ausbildung von Komplexität in selbstorganisierten Strukturen chemischer Systeme.

Gedanken über mögliche Anwendungen für die neue, soeben in „Science" publizierte Erkenntnis hält Tschierske zwar für spekulativ: „Wir betreiben Grundlagenforschung, bauen neue Moleküle, um zu sehen: Wie organisieren sie sich?", beschreibt der hallesche Forscher die Arbeit seines Teams. Einige Beispiele kann er aber dennoch nennen: „Holographische Informationsspeicherung, ‚Nanolithographie’ und die Strukturierung organischer elektronischer Materialien in organischen Solarzellen und Transistoren.“

„Science“-Veröffentlichung
“Complex Multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals”, Science Vol. 331 (2001), Seite 1302 ff.

Autoren: Xiangbing Zeng, Robert Kieffer, Benjamin Glettner, Constance Nürnberger, Feng Liu, Karsten Pelz, Marko Prehm, Ute Baumeister, Harald Hahn, Heinrich Lang, Gillian A. Gehring, Christa H. M. Weber, Jamie K. Hobbs, Carsten Tschierske, Goran Ungar

Ansprechpartner zu dieser Pressemitteilung
Prof. Dr. Carsten Tschierske
Telefon: 0345 55 25664
Email: carsten.tschierske@chemie.uni-halle.de

Ulf Walther | idw
Weitere Informationen:
http://www.chemie.uni-halle.de
http://www.sciencemag.org/content/331/6022/1302.full.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise