Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüssigkristalle auf dem Weg zur Komplexität

11.03.2011
Die Ordnung, wie sie für Kristalle typisch ist, kombiniert mit der Beweglichkeit von Flüssigkeiten ergibt den sogenannten „4. Aggregatzustand“ – Flüssigkristalle. Diese Form der kondensierten Materie ist nicht nur die Voraussetzung für flache Displays (LCDs), welche man heute z.B. in allen Laptop-Computern verwendet.

Wie sich Moleküle zu hochkomplexen flüssigkristallinen Strukturen spontan selbstorganisieren können, beschreiben Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) in internationaler Kooperation mit anderen Forschergruppen in einem Artikel in der jüngsten Ausgabe des renommierten Wissenschaftsmagazins „Science“.

Das Forschungsgebiet des Chemikers Prof. Dr. Carsten Tschierske berührt gleich zwei Schwerpunkte der MLU: die Bio- und die Materialwissenschaften. Seine Arbeit ist unter anderem Teil des an der MLU angesiedelten Landesexzellenznetzwerks „Nanostrukturierte Materialien" und der Forschergruppe 1145. Er interessiert sich vor allem für die Entwicklung neuer Möglichkeiten zur Erzeugung komplexer flüssigkristalliner Strukturen.

Bisher bekannte Flüssigkristalle etwa haben noch sehr einfache Strukturen, weit entfernt zum Beispiel von der Komplexität lebender Systeme. In ihrer Arbeit “Complex multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals” beschreiben die Wissenschaftler rund um Tschierske jetzt, wie sich spezifisch entwickelte „tetraphile“ Moleküle zu hochkomplexen flüssigkristallinen Strukturen spontan selbstorganisieren können.

Alle für die Strukturbildung notwendigen Informationen müssen detailliert in der molekularen Struktur festgeschrieben sein. Dies wird erreicht durch eine gezielte Kombination von in diesem Fall vier (daher ,tetraphil’) verschiedenen miteinander unverträglichen und sich daher gegenseitig abstoßenden Molekülteilen mit anderen, sich gegenseitig anziehenden Teilen.

„So wird die abstoßende Wirkung aufgehoben und es können sich komplexere Strukturen bilden. Derartige Moleküle können sich in Waben organisieren, die von der Struktur her Bienenwaben ähnlich sind“, erläutert Prof. Dr. Carsten Tschierske von der MLU. „Während die allgemein bekannten Bienenwaben alle die gleiche sechseckige Form aufweisen und mit identischem Inhalt, dem Honig, gefüllt sind, bestehen die molekularen Wabenstrukturen jedoch aus periodischen Gittern von Einzelwaben unterschiedlicher Form, sind etwa dreieckig, viereckig oder sechseckig, und haben einen Durchmesser von nur wenigen Nanometern.“

Diese „Nanowaben“ sind zudem unterschiedlich gefüllt. Und: die Waben sind nicht fest wie die Bienenwaben, sondern stellen flüssige dynamische Strukturen dar.

Diese Fließeigenschaft ist entscheidend für einen zweiten Aspekt dieser Arbeit. Dieser zeigt, dass sich bei höheren Temperaturen die Inhalte verschiedener Waben vermischen können. Das verringert die Komplexität, da nun alle Waben wieder die gleichen Inhalte haben können. Die Wissenschaftler konnten nachweisen, dass der Übergang zwischen Strukturen niedriger und höherer Komplexität kontinuierlich ist. Damit ermöglichen diese Arbeiten ein generelles fachübergreifendes Verständnis der Ausbildung von Komplexität in selbstorganisierten Strukturen chemischer Systeme.

Gedanken über mögliche Anwendungen für die neue, soeben in „Science" publizierte Erkenntnis hält Tschierske zwar für spekulativ: „Wir betreiben Grundlagenforschung, bauen neue Moleküle, um zu sehen: Wie organisieren sie sich?", beschreibt der hallesche Forscher die Arbeit seines Teams. Einige Beispiele kann er aber dennoch nennen: „Holographische Informationsspeicherung, ‚Nanolithographie’ und die Strukturierung organischer elektronischer Materialien in organischen Solarzellen und Transistoren.“

„Science“-Veröffentlichung
“Complex Multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals”, Science Vol. 331 (2001), Seite 1302 ff.

Autoren: Xiangbing Zeng, Robert Kieffer, Benjamin Glettner, Constance Nürnberger, Feng Liu, Karsten Pelz, Marko Prehm, Ute Baumeister, Harald Hahn, Heinrich Lang, Gillian A. Gehring, Christa H. M. Weber, Jamie K. Hobbs, Carsten Tschierske, Goran Ungar

Ansprechpartner zu dieser Pressemitteilung
Prof. Dr. Carsten Tschierske
Telefon: 0345 55 25664
Email: carsten.tschierske@chemie.uni-halle.de

Ulf Walther | idw
Weitere Informationen:
http://www.chemie.uni-halle.de
http://www.sciencemag.org/content/331/6022/1302.full.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie

Neurone am Rande der Katastrophe: Wie das Gehirn durch kritische Zustände effizient arbeitet

23.03.2017 | Seminare Workshops

Müll in den Weltmeeren überall präsent: 1220 Arten betroffen

23.03.2017 | Ökologie Umwelt- Naturschutz