Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibles Halbleitermaterial für Elektronik, Solartechnologie und Photokatalyse

12.09.2016

Die Doppelhelix hat als stabile und flexible Struktur des Erbguts das Leben auf der Erde erst möglich gemacht. Nun hat ein Team der Technischen Universität München (TUM) eine Doppelhelix-Struktur auch in einem anorganischen Material entdeckt. Das Material aus Zinn, Iod und Phosphor ist ein Halbleiter, besitzt außergewöhnliche optische und elektronische Eigenschaften und ist mechanisch hoch flexibel.

Flexibel und stabil gleichzeitig – das ist einer der Gründe, warum die Natur die Erbsubstanz in Form einer Doppelhelix anlegt. Wissenschaftler der TU München haben nun auch eine anorganische Substanz entdeckt, deren Elemente die Form einer Doppelhelix bilden.


Halbleitermaterial mit Doppelhelix-Struktur - Elektronenmikroskopische Aufnahme

Bild: Viola Duppel / MPI für Festköperforschung, Stuttgart


Flexibler Halbleiter aus Zinn, Iod und Phosphor (SnIP) mit Doppelhelix-Struktur

Bild: Andreas Battenberg / TUM

Das aus den Elementen Zinn (Sn), Iod (I) und Phosphor (P) bestehende Material mit der einfachen Zusammensetzung SnIP ist ein Halbleiter. Anders als alle bisherigen anorganischen Halbleiter-Materialien ist es jedoch hoch flexibel. Die teilweise zentimeterlangen Fasern lassen sich beliebig biegen, ohne zu brechen.

„Diese Eigenschaft von SnIP ist eindeutig der Doppelhelix zuzuschreiben“, sagt Daniela Pfister, Entdeckerin des Materials und Mitarbeiterin in der Arbeitsgruppe von Tom Nilges, Professor für Synthese und Charakterisierung innovativer Materialien an der TU München. „SnIP lässt sich einfach im Gramm-Maßstab herstellen und ist anders als Galliumarsenid, das ähnliche elektronische Eigenschaften hat, weitaus weniger giftig.“

Unzählige Anwendungsmöglichkeiten

Die Halbleiter-Eigenschaften von SnIP versprechen viele Einsatzmöglichkeiten von der Energiewandlung in Solarzellen oder thermoelektrischen Elementen über Photokatalysatoren und Sensoren bis hin zu optoelektronischen Bauelementen. Durch Dotierung mit anderen Elementen sollten sich die elektronischen Eigenschaften des neuen Materials in weiten Bereichen einstellen lassen.

Aufgrund der Anordnung der Atome in der Form einer Doppelhelix, können die bis zu einem Zentimeter langen Fasern leicht in dünnere Stränge aufgeteilt werden. Die bisher dünnsten Fasern bestehen aus nur noch fünf Doppelhelix-Strängen und sind nur wenige Nanometer dick. Das macht auch Anwendungen in der Nanoelektronik denkbar.

„Vor allem die Kombination aus interessanten Halbleiter-Eigenschaften und mechanischer Flexibilität macht uns Hoffnung auf viele Einsatzmöglichkeiten“, sagt Tom Nilges. „Im Vergleich mit organischen Solarzellen erhoffen wir uns von anorganischen Materialien auch eine deutlich bessere Stabilität. So ist SnIP beispielsweise bis etwa 500°C stabil.“

Am Anfang der Entwicklung

„Ähnlich wie beim Kohlenstoff, wo es das dreidimensional (3D) aufgebaute Material Diamant, das 2D-Material Graphen und die Nanotubes als 1D-Material gibt“, erläutert Professor Nilges, „haben wir hier neben dem 3D-Halbleitermaterial Silizium und dem Phosphoren als 2D-Material nun erstmals ein eindimensionales Material – mit mindestens ebenso spannenden Perspektiven wie sie Kohlenstoff-Nanoröhrchen besitzen.“

Wie Kohlenstoff-Nanoröhrchen und polymerbasierte Druckfarben können die SnIP-Doppelhelices in Lösungsmitteln wie Toluol suspendiert werden. Damit ließen sich einfach und kostengünstig dünne Schichten produzieren. „Wir stehen hier aber erst ganz am Anfang der Materialentwicklung,“ sagt Daniela Pfister. „Jeder einzelne Verarbeitungsschritt muss erst noch entwickelt werden.“

Da die Doppelhelix-Stränge von SnIP rechtsdrehend und linksdrehend vorliegen können, müssten Materialien, in denen nur die eine oder die andere Form enthalten ist, ganz besondere optische Eigenschaften haben. Dies macht sie für die Optoelektronik hoch interessant. Noch ist es allerdings nicht gelungen eine Technik zur Trennung der beiden Formen zu finden.

Theoretische Berechnungen der Wissenschaftler zeigten, dass auch eine ganze Reihe weiterer Elemente solche anorganischen Doppelhelices bilden müssten. Ein umfassender Patentschutz wurde bereits beantragt. Mit Hochdruck arbeiten die Wissenschaftler nun daran, geeignete Herstellungsverfahren für weitere Materialien zu finden.

Interdisziplinäre Kooperation

An der Charakterisierung des neuen Materials arbeitet eine groß angelegte interdisziplinäre Kooperation: Photolumineszenz- und Leitfähigkeitsmessungen wurden am Walter Schottky Institut der TU München durchgeführt. An den theoretischen Berechnungen beteiligten sich Theoretische Chemiker der Universität Augsburg. Transmissions-Elektronenmikroskopische Aufnahmen führten Forscher der Universität Kiel und des Max-Planck-Institut für Festkörperforschung in Stuttgart durch. Mößbauer-Spektren und magnetische Eigenschaften wurden an der Universität Münster gemessen. Kernmagnetresonanz-Messungen wurden an der Universität Augsburg durchgeführt, und thermoanalytische Messungen steuerten Wissenschaftler der TU Cottbus bei.

Die Arbeiten wurden unterstützt mit Mitteln der DFG (SPP 1415), der International Graduate School ATUMS (TU München und University of Alberta, Kanada) und der TUM Graduate School.

Publikation:

Daniela Pfister, Konrad Schäfer, Claudia Ott, Birgit Gerke, Rainer Pöttgen, Oliver Janka, Maximilian Baumgartner, Anastasia Efimova, Andrea Hohmann, Peer Schmidt, Sabarinathan Venkatachalam, Leo van Wüllen, Ulrich Schürmann, Lorenz Kienle, Viola Duppel, Eric Parzinger, Bastian Miller, Jonathan Becker, Alexander Holleitner, Richard Weihrich und Tom Nilges; Inorganic Double Helices in Semiconducting SnIP.
Advanced Materials, Early view, 12.09.2016 – DOI: 10.1002/adma.201603135
http://onlinelibrary.wiley.com/doi/10.1002/adma.201603135/full

Kontakt:

Prof. Dr. Tom Nilges
Technische Universität München
Professur für Synthese und Charakterisierung innovativer Materialien
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13110 – E-Mail: tom.nilges@lrz.tum.de – Web: http://www.tum.de

Weitere Informationen:

https://mediatum.ub.tum.de/1324631?show_id=1325742 Video: Biegen einer SnIP-Nadel
https://youtu.be/Zn7wxd5KSsQ Video: Atomare Struktur von SnIP

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten