Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibles Halbleitermaterial für Elektronik, Solartechnologie und Photokatalyse

12.09.2016

Die Doppelhelix hat als stabile und flexible Struktur des Erbguts das Leben auf der Erde erst möglich gemacht. Nun hat ein Team der Technischen Universität München (TUM) eine Doppelhelix-Struktur auch in einem anorganischen Material entdeckt. Das Material aus Zinn, Iod und Phosphor ist ein Halbleiter, besitzt außergewöhnliche optische und elektronische Eigenschaften und ist mechanisch hoch flexibel.

Flexibel und stabil gleichzeitig – das ist einer der Gründe, warum die Natur die Erbsubstanz in Form einer Doppelhelix anlegt. Wissenschaftler der TU München haben nun auch eine anorganische Substanz entdeckt, deren Elemente die Form einer Doppelhelix bilden.


Halbleitermaterial mit Doppelhelix-Struktur - Elektronenmikroskopische Aufnahme

Bild: Viola Duppel / MPI für Festköperforschung, Stuttgart


Flexibler Halbleiter aus Zinn, Iod und Phosphor (SnIP) mit Doppelhelix-Struktur

Bild: Andreas Battenberg / TUM

Das aus den Elementen Zinn (Sn), Iod (I) und Phosphor (P) bestehende Material mit der einfachen Zusammensetzung SnIP ist ein Halbleiter. Anders als alle bisherigen anorganischen Halbleiter-Materialien ist es jedoch hoch flexibel. Die teilweise zentimeterlangen Fasern lassen sich beliebig biegen, ohne zu brechen.

„Diese Eigenschaft von SnIP ist eindeutig der Doppelhelix zuzuschreiben“, sagt Daniela Pfister, Entdeckerin des Materials und Mitarbeiterin in der Arbeitsgruppe von Tom Nilges, Professor für Synthese und Charakterisierung innovativer Materialien an der TU München. „SnIP lässt sich einfach im Gramm-Maßstab herstellen und ist anders als Galliumarsenid, das ähnliche elektronische Eigenschaften hat, weitaus weniger giftig.“

Unzählige Anwendungsmöglichkeiten

Die Halbleiter-Eigenschaften von SnIP versprechen viele Einsatzmöglichkeiten von der Energiewandlung in Solarzellen oder thermoelektrischen Elementen über Photokatalysatoren und Sensoren bis hin zu optoelektronischen Bauelementen. Durch Dotierung mit anderen Elementen sollten sich die elektronischen Eigenschaften des neuen Materials in weiten Bereichen einstellen lassen.

Aufgrund der Anordnung der Atome in der Form einer Doppelhelix, können die bis zu einem Zentimeter langen Fasern leicht in dünnere Stränge aufgeteilt werden. Die bisher dünnsten Fasern bestehen aus nur noch fünf Doppelhelix-Strängen und sind nur wenige Nanometer dick. Das macht auch Anwendungen in der Nanoelektronik denkbar.

„Vor allem die Kombination aus interessanten Halbleiter-Eigenschaften und mechanischer Flexibilität macht uns Hoffnung auf viele Einsatzmöglichkeiten“, sagt Tom Nilges. „Im Vergleich mit organischen Solarzellen erhoffen wir uns von anorganischen Materialien auch eine deutlich bessere Stabilität. So ist SnIP beispielsweise bis etwa 500°C stabil.“

Am Anfang der Entwicklung

„Ähnlich wie beim Kohlenstoff, wo es das dreidimensional (3D) aufgebaute Material Diamant, das 2D-Material Graphen und die Nanotubes als 1D-Material gibt“, erläutert Professor Nilges, „haben wir hier neben dem 3D-Halbleitermaterial Silizium und dem Phosphoren als 2D-Material nun erstmals ein eindimensionales Material – mit mindestens ebenso spannenden Perspektiven wie sie Kohlenstoff-Nanoröhrchen besitzen.“

Wie Kohlenstoff-Nanoröhrchen und polymerbasierte Druckfarben können die SnIP-Doppelhelices in Lösungsmitteln wie Toluol suspendiert werden. Damit ließen sich einfach und kostengünstig dünne Schichten produzieren. „Wir stehen hier aber erst ganz am Anfang der Materialentwicklung,“ sagt Daniela Pfister. „Jeder einzelne Verarbeitungsschritt muss erst noch entwickelt werden.“

Da die Doppelhelix-Stränge von SnIP rechtsdrehend und linksdrehend vorliegen können, müssten Materialien, in denen nur die eine oder die andere Form enthalten ist, ganz besondere optische Eigenschaften haben. Dies macht sie für die Optoelektronik hoch interessant. Noch ist es allerdings nicht gelungen eine Technik zur Trennung der beiden Formen zu finden.

Theoretische Berechnungen der Wissenschaftler zeigten, dass auch eine ganze Reihe weiterer Elemente solche anorganischen Doppelhelices bilden müssten. Ein umfassender Patentschutz wurde bereits beantragt. Mit Hochdruck arbeiten die Wissenschaftler nun daran, geeignete Herstellungsverfahren für weitere Materialien zu finden.

Interdisziplinäre Kooperation

An der Charakterisierung des neuen Materials arbeitet eine groß angelegte interdisziplinäre Kooperation: Photolumineszenz- und Leitfähigkeitsmessungen wurden am Walter Schottky Institut der TU München durchgeführt. An den theoretischen Berechnungen beteiligten sich Theoretische Chemiker der Universität Augsburg. Transmissions-Elektronenmikroskopische Aufnahmen führten Forscher der Universität Kiel und des Max-Planck-Institut für Festkörperforschung in Stuttgart durch. Mößbauer-Spektren und magnetische Eigenschaften wurden an der Universität Münster gemessen. Kernmagnetresonanz-Messungen wurden an der Universität Augsburg durchgeführt, und thermoanalytische Messungen steuerten Wissenschaftler der TU Cottbus bei.

Die Arbeiten wurden unterstützt mit Mitteln der DFG (SPP 1415), der International Graduate School ATUMS (TU München und University of Alberta, Kanada) und der TUM Graduate School.

Publikation:

Daniela Pfister, Konrad Schäfer, Claudia Ott, Birgit Gerke, Rainer Pöttgen, Oliver Janka, Maximilian Baumgartner, Anastasia Efimova, Andrea Hohmann, Peer Schmidt, Sabarinathan Venkatachalam, Leo van Wüllen, Ulrich Schürmann, Lorenz Kienle, Viola Duppel, Eric Parzinger, Bastian Miller, Jonathan Becker, Alexander Holleitner, Richard Weihrich und Tom Nilges; Inorganic Double Helices in Semiconducting SnIP.
Advanced Materials, Early view, 12.09.2016 – DOI: 10.1002/adma.201603135
http://onlinelibrary.wiley.com/doi/10.1002/adma.201603135/full

Kontakt:

Prof. Dr. Tom Nilges
Technische Universität München
Professur für Synthese und Charakterisierung innovativer Materialien
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13110 – E-Mail: tom.nilges@lrz.tum.de – Web: http://www.tum.de

Weitere Informationen:

https://mediatum.ub.tum.de/1324631?show_id=1325742 Video: Biegen einer SnIP-Nadel
https://youtu.be/Zn7wxd5KSsQ Video: Atomare Struktur von SnIP

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie