Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexibles Halbleitermaterial für Elektronik, Solartechnologie und Photokatalyse

12.09.2016

Die Doppelhelix hat als stabile und flexible Struktur des Erbguts das Leben auf der Erde erst möglich gemacht. Nun hat ein Team der Technischen Universität München (TUM) eine Doppelhelix-Struktur auch in einem anorganischen Material entdeckt. Das Material aus Zinn, Iod und Phosphor ist ein Halbleiter, besitzt außergewöhnliche optische und elektronische Eigenschaften und ist mechanisch hoch flexibel.

Flexibel und stabil gleichzeitig – das ist einer der Gründe, warum die Natur die Erbsubstanz in Form einer Doppelhelix anlegt. Wissenschaftler der TU München haben nun auch eine anorganische Substanz entdeckt, deren Elemente die Form einer Doppelhelix bilden.


Halbleitermaterial mit Doppelhelix-Struktur - Elektronenmikroskopische Aufnahme

Bild: Viola Duppel / MPI für Festköperforschung, Stuttgart


Flexibler Halbleiter aus Zinn, Iod und Phosphor (SnIP) mit Doppelhelix-Struktur

Bild: Andreas Battenberg / TUM

Das aus den Elementen Zinn (Sn), Iod (I) und Phosphor (P) bestehende Material mit der einfachen Zusammensetzung SnIP ist ein Halbleiter. Anders als alle bisherigen anorganischen Halbleiter-Materialien ist es jedoch hoch flexibel. Die teilweise zentimeterlangen Fasern lassen sich beliebig biegen, ohne zu brechen.

„Diese Eigenschaft von SnIP ist eindeutig der Doppelhelix zuzuschreiben“, sagt Daniela Pfister, Entdeckerin des Materials und Mitarbeiterin in der Arbeitsgruppe von Tom Nilges, Professor für Synthese und Charakterisierung innovativer Materialien an der TU München. „SnIP lässt sich einfach im Gramm-Maßstab herstellen und ist anders als Galliumarsenid, das ähnliche elektronische Eigenschaften hat, weitaus weniger giftig.“

Unzählige Anwendungsmöglichkeiten

Die Halbleiter-Eigenschaften von SnIP versprechen viele Einsatzmöglichkeiten von der Energiewandlung in Solarzellen oder thermoelektrischen Elementen über Photokatalysatoren und Sensoren bis hin zu optoelektronischen Bauelementen. Durch Dotierung mit anderen Elementen sollten sich die elektronischen Eigenschaften des neuen Materials in weiten Bereichen einstellen lassen.

Aufgrund der Anordnung der Atome in der Form einer Doppelhelix, können die bis zu einem Zentimeter langen Fasern leicht in dünnere Stränge aufgeteilt werden. Die bisher dünnsten Fasern bestehen aus nur noch fünf Doppelhelix-Strängen und sind nur wenige Nanometer dick. Das macht auch Anwendungen in der Nanoelektronik denkbar.

„Vor allem die Kombination aus interessanten Halbleiter-Eigenschaften und mechanischer Flexibilität macht uns Hoffnung auf viele Einsatzmöglichkeiten“, sagt Tom Nilges. „Im Vergleich mit organischen Solarzellen erhoffen wir uns von anorganischen Materialien auch eine deutlich bessere Stabilität. So ist SnIP beispielsweise bis etwa 500°C stabil.“

Am Anfang der Entwicklung

„Ähnlich wie beim Kohlenstoff, wo es das dreidimensional (3D) aufgebaute Material Diamant, das 2D-Material Graphen und die Nanotubes als 1D-Material gibt“, erläutert Professor Nilges, „haben wir hier neben dem 3D-Halbleitermaterial Silizium und dem Phosphoren als 2D-Material nun erstmals ein eindimensionales Material – mit mindestens ebenso spannenden Perspektiven wie sie Kohlenstoff-Nanoröhrchen besitzen.“

Wie Kohlenstoff-Nanoröhrchen und polymerbasierte Druckfarben können die SnIP-Doppelhelices in Lösungsmitteln wie Toluol suspendiert werden. Damit ließen sich einfach und kostengünstig dünne Schichten produzieren. „Wir stehen hier aber erst ganz am Anfang der Materialentwicklung,“ sagt Daniela Pfister. „Jeder einzelne Verarbeitungsschritt muss erst noch entwickelt werden.“

Da die Doppelhelix-Stränge von SnIP rechtsdrehend und linksdrehend vorliegen können, müssten Materialien, in denen nur die eine oder die andere Form enthalten ist, ganz besondere optische Eigenschaften haben. Dies macht sie für die Optoelektronik hoch interessant. Noch ist es allerdings nicht gelungen eine Technik zur Trennung der beiden Formen zu finden.

Theoretische Berechnungen der Wissenschaftler zeigten, dass auch eine ganze Reihe weiterer Elemente solche anorganischen Doppelhelices bilden müssten. Ein umfassender Patentschutz wurde bereits beantragt. Mit Hochdruck arbeiten die Wissenschaftler nun daran, geeignete Herstellungsverfahren für weitere Materialien zu finden.

Interdisziplinäre Kooperation

An der Charakterisierung des neuen Materials arbeitet eine groß angelegte interdisziplinäre Kooperation: Photolumineszenz- und Leitfähigkeitsmessungen wurden am Walter Schottky Institut der TU München durchgeführt. An den theoretischen Berechnungen beteiligten sich Theoretische Chemiker der Universität Augsburg. Transmissions-Elektronenmikroskopische Aufnahmen führten Forscher der Universität Kiel und des Max-Planck-Institut für Festkörperforschung in Stuttgart durch. Mößbauer-Spektren und magnetische Eigenschaften wurden an der Universität Münster gemessen. Kernmagnetresonanz-Messungen wurden an der Universität Augsburg durchgeführt, und thermoanalytische Messungen steuerten Wissenschaftler der TU Cottbus bei.

Die Arbeiten wurden unterstützt mit Mitteln der DFG (SPP 1415), der International Graduate School ATUMS (TU München und University of Alberta, Kanada) und der TUM Graduate School.

Publikation:

Daniela Pfister, Konrad Schäfer, Claudia Ott, Birgit Gerke, Rainer Pöttgen, Oliver Janka, Maximilian Baumgartner, Anastasia Efimova, Andrea Hohmann, Peer Schmidt, Sabarinathan Venkatachalam, Leo van Wüllen, Ulrich Schürmann, Lorenz Kienle, Viola Duppel, Eric Parzinger, Bastian Miller, Jonathan Becker, Alexander Holleitner, Richard Weihrich und Tom Nilges; Inorganic Double Helices in Semiconducting SnIP.
Advanced Materials, Early view, 12.09.2016 – DOI: 10.1002/adma.201603135
http://onlinelibrary.wiley.com/doi/10.1002/adma.201603135/full

Kontakt:

Prof. Dr. Tom Nilges
Technische Universität München
Professur für Synthese und Charakterisierung innovativer Materialien
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13110 – E-Mail: tom.nilges@lrz.tum.de – Web: http://www.tum.de

Weitere Informationen:

https://mediatum.ub.tum.de/1324631?show_id=1325742 Video: Biegen einer SnIP-Nadel
https://youtu.be/Zn7wxd5KSsQ Video: Atomare Struktur von SnIP

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops

Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System

08.12.2016 | Physik Astronomie

Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten

08.12.2016 | Energie und Elektrotechnik