Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flachkristalle mit Superkräften

24.03.2011
Dem Kohlenstoff gehört die Zukunft.

Materialwissenschaftler sehen in dem Stoff, der in seiner reinen Form in der Natur als Graphit und Diamant vorkommt, enormes Potenzial, zum Beispiel für die Herstellung von Hochleistungswerkstoffen und molekularer Elektronik. Besonders vielversprechend erscheinen künstlich hergestellte Kohlenstoffstrukturen, deren physikalische und chemische Eigenschaften die Forscher gezielt beeinflussen können – wie das sogenannte Graphen. Chemiker von der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt ein Verfahren entwickelt, das die Produktion solcher Kohlenstoffkris­talle in großen Mengen erlaubt.


Graphen ist ein zweidimensionaler Kristall aus Kohlenstoff­atomen, die durch starke Bindungen in einer Honigwabenstruktur angeordnet sind. Mit Hilfe von Alkalimetallen (blau) werden einzelne Graphenschichten von einem Graphitkristall abgespalten. Abstandshalter-Moleküle (gelb) verhindern, dass sich das Graphen wieder am Graphit anlagert. Grafik: Dr. Frank Hauke

Den Forschern ist es gelungen, ohne mechanische Einwirkung isolierte Graphenschichten herzustellen und diese in nur einem weiteren Schritt mit maßgeschneiderten Eigenschaften auszustatten. Ihre Forschungsergebnisse haben Prof. Dr. Andreas Hirsch und sein Doktorand Jan Englert jetzt in der renommierten Zeitschrift „nature chemistry“ publiziert. (Vol. 3 No. 4, 2011)

Diamant und Graphit zeigen jeweils eine Reihe von einzigartigen physikalischen Eigenschaften wie Härte, thermische und elektrische Leitfähigkeit, Gleitverhalten, die sich daraus ergeben, wie die Kohlenstoffatome zueinander angeordnet sind. Beim Diamanten liegen die Atome mit tetraedrischer Bindungsgeometrie vor, während im Graphit die Atome wie Honigwaben in flachen Schichten aus Sechsecken übereinanderliegen. Spaltet man eine Schicht dieser Graphitwaben ab, dann erhält man eine zweidimensionale Struktur – Graphen (mit der Betonung auf der zweiten Silbe). Im Vergleich zu anderen Kristallen hat Graphen außergewöhnliche Eigenschaften, von denen erwartet wird, dass sie zu neuen Entwicklungen in der Mikro- und Nanoelektronik, Sensorik und Displaytechnologie führen werden.

Bisher konnte man Graphen nur mechanisch, zum Beispiel durch den Einsatz von spezialisierten Seifen und Ultraschall, in mehreren Einzelschritten herstellen. Jetzt gelang es Erlanger Forschern erstmals auf chemischem Weg, Graphenschichten von Graphit abzuspalten und in nur einem weiteren Schritt die Eigenschaften des neuen Materials zu verändern. Die Schwierigkeit in diesem Prozess ist, zu verhindern, dass sich die abgespaltene Kristallschicht sofort wieder am Graphit anlagert. Deshalb verankern die Chemiker Moleküle als „Abstandshalter“ am Graphen. An diesen Abstandshaltern können die Forscher weitere Moleküle andocken, die dem Graphen ganz bestimmte physikalische oder chemische Eigenschaften verleihen. Mit der Entwicklung des neuen chemischen Verfahrens ist den Erlanger Forschern ein entscheidender Schritt gelungen, Graphen in großen Mengen herzustellen – eine essenzielle Voraussetzung für die industrielle Weiterverarbeitung.

Praktische Einsatzmöglichkeiten für das synthetische Material gibt es viele: zum Beispiel in transparenten Elektroden für die Display- oder Solarzelltechnologie oder in Sensoren mit bislang unerreichten Empfindlichkeiten, die sogar einzelne Atome aufspüren können. Die Honigwabenstruktur von Graphen ist extrem strapazierfähig. So zeigt das Material entlang seiner Ebene eine herausragende Zugfestigkeit, welche die von konventionellem Stahl um mehr als das hundertfache übersteigt – und das bei einem Gewicht von nur ca. einem Gramm auf 1300 Quadratmeter (etwa der Fläche eines Wettkampfschwimmbeckens). Ein weiterer Effekt der atomaren Struktur betrifft die Ladungsträger selbst. Diese bewegen sich im Material so ungewöhnlich schnell, als besäßen sie keine Masse und lassen auf Computer mit Taktraten hoffen, die hundertmal höher sind als die moderne Silizium-Technologie erlaubt. Noch verhindert die elektrische Leitfähigkeit der Graphene effektive Schaltprozesse und damit den Einsatz in modernen Computerchips.

An diesem Problem und anderen Fragestellungen arbeiten die Erlanger Forscher im Rahmen des prestigeträchtigen Advanced Grant „Graphenochem“ des Europäischen Forschungsrats, den die Arbeitsgruppe von Professor Hirsch nach Erlangen holen konnte und der mit mehr als 1,4 Millionen Euro gefördert wird. Die Arbeitsgruppe erforscht darüber hinaus auch andere synthetische Kohlenstoffallotrope: zum Beispiel eindimensionale Nanoröhren, die einen Meilenstein im Bereich der Nanotechnologie darstellen, oder die sogenannten Fullerene. Das sind Kohlenstoffmoleküle, bei denen ein sphärisch geschlossenes Netzwerk von Kohlenstoff-Atomen vorliegt und die ihrer Form wegen auch Fußballmoleküle genannt werden.

Mehr Informationen:
Prof. Dr. Andreas Hirsch
Tel.: 09131/85-22537
andreas.hirsch@chemie.uni-erlangen.de
Jan Englert
Tel.: 0911/950918-27
jan.englert@chemie.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rückgang großer fruchtfressender Vögel bedroht Tropenwälder

07.12.2016 | Biowissenschaften Chemie

Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies

07.12.2016 | Informationstechnologie

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops