Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flachkristalle mit Superkräften

24.03.2011
Dem Kohlenstoff gehört die Zukunft.

Materialwissenschaftler sehen in dem Stoff, der in seiner reinen Form in der Natur als Graphit und Diamant vorkommt, enormes Potenzial, zum Beispiel für die Herstellung von Hochleistungswerkstoffen und molekularer Elektronik. Besonders vielversprechend erscheinen künstlich hergestellte Kohlenstoffstrukturen, deren physikalische und chemische Eigenschaften die Forscher gezielt beeinflussen können – wie das sogenannte Graphen. Chemiker von der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt ein Verfahren entwickelt, das die Produktion solcher Kohlenstoffkris­talle in großen Mengen erlaubt.


Graphen ist ein zweidimensionaler Kristall aus Kohlenstoff­atomen, die durch starke Bindungen in einer Honigwabenstruktur angeordnet sind. Mit Hilfe von Alkalimetallen (blau) werden einzelne Graphenschichten von einem Graphitkristall abgespalten. Abstandshalter-Moleküle (gelb) verhindern, dass sich das Graphen wieder am Graphit anlagert. Grafik: Dr. Frank Hauke

Den Forschern ist es gelungen, ohne mechanische Einwirkung isolierte Graphenschichten herzustellen und diese in nur einem weiteren Schritt mit maßgeschneiderten Eigenschaften auszustatten. Ihre Forschungsergebnisse haben Prof. Dr. Andreas Hirsch und sein Doktorand Jan Englert jetzt in der renommierten Zeitschrift „nature chemistry“ publiziert. (Vol. 3 No. 4, 2011)

Diamant und Graphit zeigen jeweils eine Reihe von einzigartigen physikalischen Eigenschaften wie Härte, thermische und elektrische Leitfähigkeit, Gleitverhalten, die sich daraus ergeben, wie die Kohlenstoffatome zueinander angeordnet sind. Beim Diamanten liegen die Atome mit tetraedrischer Bindungsgeometrie vor, während im Graphit die Atome wie Honigwaben in flachen Schichten aus Sechsecken übereinanderliegen. Spaltet man eine Schicht dieser Graphitwaben ab, dann erhält man eine zweidimensionale Struktur – Graphen (mit der Betonung auf der zweiten Silbe). Im Vergleich zu anderen Kristallen hat Graphen außergewöhnliche Eigenschaften, von denen erwartet wird, dass sie zu neuen Entwicklungen in der Mikro- und Nanoelektronik, Sensorik und Displaytechnologie führen werden.

Bisher konnte man Graphen nur mechanisch, zum Beispiel durch den Einsatz von spezialisierten Seifen und Ultraschall, in mehreren Einzelschritten herstellen. Jetzt gelang es Erlanger Forschern erstmals auf chemischem Weg, Graphenschichten von Graphit abzuspalten und in nur einem weiteren Schritt die Eigenschaften des neuen Materials zu verändern. Die Schwierigkeit in diesem Prozess ist, zu verhindern, dass sich die abgespaltene Kristallschicht sofort wieder am Graphit anlagert. Deshalb verankern die Chemiker Moleküle als „Abstandshalter“ am Graphen. An diesen Abstandshaltern können die Forscher weitere Moleküle andocken, die dem Graphen ganz bestimmte physikalische oder chemische Eigenschaften verleihen. Mit der Entwicklung des neuen chemischen Verfahrens ist den Erlanger Forschern ein entscheidender Schritt gelungen, Graphen in großen Mengen herzustellen – eine essenzielle Voraussetzung für die industrielle Weiterverarbeitung.

Praktische Einsatzmöglichkeiten für das synthetische Material gibt es viele: zum Beispiel in transparenten Elektroden für die Display- oder Solarzelltechnologie oder in Sensoren mit bislang unerreichten Empfindlichkeiten, die sogar einzelne Atome aufspüren können. Die Honigwabenstruktur von Graphen ist extrem strapazierfähig. So zeigt das Material entlang seiner Ebene eine herausragende Zugfestigkeit, welche die von konventionellem Stahl um mehr als das hundertfache übersteigt – und das bei einem Gewicht von nur ca. einem Gramm auf 1300 Quadratmeter (etwa der Fläche eines Wettkampfschwimmbeckens). Ein weiterer Effekt der atomaren Struktur betrifft die Ladungsträger selbst. Diese bewegen sich im Material so ungewöhnlich schnell, als besäßen sie keine Masse und lassen auf Computer mit Taktraten hoffen, die hundertmal höher sind als die moderne Silizium-Technologie erlaubt. Noch verhindert die elektrische Leitfähigkeit der Graphene effektive Schaltprozesse und damit den Einsatz in modernen Computerchips.

An diesem Problem und anderen Fragestellungen arbeiten die Erlanger Forscher im Rahmen des prestigeträchtigen Advanced Grant „Graphenochem“ des Europäischen Forschungsrats, den die Arbeitsgruppe von Professor Hirsch nach Erlangen holen konnte und der mit mehr als 1,4 Millionen Euro gefördert wird. Die Arbeitsgruppe erforscht darüber hinaus auch andere synthetische Kohlenstoffallotrope: zum Beispiel eindimensionale Nanoröhren, die einen Meilenstein im Bereich der Nanotechnologie darstellen, oder die sogenannten Fullerene. Das sind Kohlenstoffmoleküle, bei denen ein sphärisch geschlossenes Netzwerk von Kohlenstoff-Atomen vorliegt und die ihrer Form wegen auch Fußballmoleküle genannt werden.

Mehr Informationen:
Prof. Dr. Andreas Hirsch
Tel.: 09131/85-22537
andreas.hirsch@chemie.uni-erlangen.de
Jan Englert
Tel.: 0911/950918-27
jan.englert@chemie.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung