Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flachglas biegen mit Laser und Schwerkraft

02.05.2017

Eine neue Fraunhofer-Technik ermöglicht es, Flachglas mithilfe eines Laserstrahls zu komplexen oder ungewöhnlichen Formen zu biegen. So können zukünftig neuartige Produkte für Architektur oder Design entstehen. Die Forscherinnen und Forscher nutzen dabei die besondere Eigenschaft von Glas, bei hoher Temperatur zähflüssig verformbar zu werden. Den Rest erledigen exakte Berechnungen und die Schwerkraft.

Mit präzisen Bewegungen fährt der Laserstrahl über die Glasoberfläche. Er folgt einer vorprogrammierten, noch unsichtbaren Bahn. Zwischendurch stoppt er, setzt an einer anderen Stelle wieder an und fährt weiter. Das vier Millimeter dicke Flachglas liegt in einem Ofen, der vorgeheizt ist – knapp unter dem Temperaturbereich, bei dem Glas zu fließen beginnt.


Mit der neuen Technologie der laserunterstützen Glasformgebung geformte Prototyp-Flachglasscheibe mit sehr kleinen Radien.

© Fraunhofer IWM, Foto: Felizitas Gemetz


Prototyp-Flachglasscheibe mit Wölbungen auf jeder Seite der Glasscheibe: die flachen Bereiche sind unverzerrt und ohne Formabdrücke.

© Foto Fraunhofer IWM, Foto: Felizitas Gemetz

Jetzt wird das Glas an den Stellen, die der Laser erhitzt hat, weich. Durch die Schwerkraft senken sich die erhitzten Partien wie zähflüssiger Honig nach unten. Wenn die gewünschte Verformung erreicht ist, wird der Laser ausgeschaltet, das Glas erstarrt. Entstanden ist eine faszinierende Form mit Biegungen in kleinen Radien, Wellen und kreisförmigen Ausbuchtungen.

So funktioniert die lasergestützte Technik zum Biegen von Flachglas, die das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg im Breisgau entwickelt hat. Möglich wird das Verfahren auch durch eine physikalische Besonderheit des Werkstoffs: Anders als beispielsweise Metall, besitzt Glas keinen definierten Schmelzpunkt, bei dem es sich verflüssigt. Stattdessen wird es ab einem bestimmten Temperaturbereich weich und formbar.

Glasbiegen ohne Biegeform

Das lasergestützte Verfahren aus dem Fraunhofer IWM ermöglicht in der Architektur, aber auch im Industrie-Design komplexe Formen, die bisher nicht oder nur mit großem Aufwand realisierbar waren. Das Flachglas wird geformt, ohne dass eine Biegeform Druck ausübt. So bleiben keine unschönen Abdrücke zurück – das Glas bleibt an seinen geraden Flächen optisch unverzerrt.
Software steuert den Laserstrahl

Zum Einstellen der gewünschten Form des Produkts wird zunächst ein Verfahrensablauf programmiert. Auf Grundlage der Geometriedaten werden die Dauer und die zeitliche und örtliche Abfolge der Erwärmung festgelegt sowie das Steuerprogramm für den Laserstrahl erstellt. Dabei kann der Laser zwischendurch pausieren, bestimmte Partien mehrmals erhitzen oder die Leistung verändern. »Mit unserer Technik können Hersteller ganz individuelle Glasobjekte in kleiner Stückzahl oder sogar in Einzelstücken wirtschaftlich produzieren«, sagt Tobias Rist, Wissenschaftler am Fraunhofer IWM.

Der gesamte Vorgang vom Einbringen des Glases in den Ofen bis zum Abkühlen dauert etwa eine halbe Stunde. Der Laser selbst benötigt je nach gewünschter Form nur ein paar Minuten. »Ein entscheidender Vorteil für Hersteller ist die kurze Belegungszeit der Maschine. Man bringt das Werkstück in den vorgeheizten Ofen, dann kann der Laser nach wenigen Minuten loslegen«, erklärt Tobias Rist. Danach kühlt das Glas außerhalb des Biegeofens ab und macht so Platz für das nächste Werkstück, ohne dass der Ofen heruntergekühlt werden muss. Das ist deutlich energieeffizienter als herkömmliche Verfahren: Der Laser ist zwar energieintensiv, aber die sehr kurzen Bearbeitungszeiten sparen wiederum Strom.

Bewegliche Spiegel lenken den Laserstrahl

Die Gruppe »Bearbeitungsverfahren, Glasformgebung« des Fraunhofer IWM nutzt ein leistungsstarkes CO2-Laser-Modell. Solche Laser werden in der Industrie häufig für die Materialbearbeitung eingesetzt. Der Laserstrahl trifft nicht direkt auf das Werkstück, es wird vielmehr über bewegliche Spiegel in das Innere des Ofens gelenkt. So lässt sich der Laserstrahl sehr schnell und einfach positionieren, da man nicht die gesamte Laserapparatur bewegen muss. Derzeit ist das Team in der Lage, Gläser bis zu einer Kantenlänge von 100 Zentimeter zu bearbeiten und auch Formen zu beiden Seiten der Glasscheibe einzubringen. Im nächsten Schritt experimentieren die Forscherinnen und Forscher mit verschiedenen Glassorten und erproben weitere Varianten in der Fertigung, um die Formenvielfalt bei den Produkten zu vergrößern.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/mai/flachglas-biege...

Katharina Hien | Fraunhofer Forschung Kompakt

Weitere Berichte zu: Flachglas Glasscheibe IWM Industrie-Design Laser Laserstrahl Werkstoffmechanik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics