Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Wissenschaftler erforschen die Entstehung von Nitriden

27.09.2011
Glühbirnen sind ein Auslaufmodell, Energiesparlampen sollen sie ersetzen – doch Forscher arbeiten längst an der Entwicklung neuer, extrem heller und energie-effizienter Leuchtdioden.

Dazu setzen sie Nitride ein, spezielle Kristalle, die in einem als Ammonothermal-Synthese bezeichneten Verfahren gezüchtet werden. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), der Ludwig-Maximilians-Universität München und der Universität Stuttgart wollen dieses Verfahren genauer erforschen. Jetzt fördert die Deutsche Forschungsgemeinschaft (DFG) das Projekt „Chemie und Technologie der Ammonothermal-Synthese von Nitriden“ für zunächst drei Jahre mit rund 2,7 Millionen Euro.

Aufgeteilt auf sieben Teilprojekte wollen die Wissenschaftler elementare Erkenntnisgrundlagen für die Ammonothermal-Synthese schaffen. Ihr Ziel ist es, die während der Synthese ablaufenden Prozesse zu verstehen, zu beeinflussen und daraus wissenschaftliche Erkenntnisse abzuleiten für die gezielte Zucht von Nitriden sehr hoher Qualität. Die Ergebnisse sollen die Grundlage bilden für die Entwicklung neuer Stoffe und Materialien auf Nitrid-Halbleiterbasis, die dann zum Beispiel in Leuchtdioden oder Lasern, aber auch vielen anderen Bereichen, wie z. B. der Halbleiterelektrotechnik, genutzt werden könnten.

Von der FAU sind neben dem Sprecher des Projekts, Prof. Dr. Eberhard Schlücker (Leiter des Lehrstuhls für Prozessmaschinen und Anlagentechnik), an dem Projekt beteiligt: Prof. Dr. Wilhelm Schwieger (Lehrstuhl für Chemische Reaktionstechnik), Prof. Dr. Peter Wellmann (Lehrstuhl für Werkstoffwissenschaften [Werkstoffe der Elektronik und Energietechnik]), Prof. Dr. Lothar Frey (Leiter des Lehrstuhls für elektronische Bauelemente) und Frau Dr. Elke Meißner (Fraunhofer IISB).

Die Ammonothermal-Synthese
„In heutigen Leuchtdioden, den LEDs, wird beispielsweise Galliumnitrid verwendet“, erläutert Prof. Schlücker. „Das Galliumnitrid wird in einer Schicht z. B. auf Saphir-Substrate aufkristallisiert mit dem Resultat eines mit wenig Energieaufwand hell leuchtenden Lichts.“ Diese Methode hat jedoch den Nachteil, dass durch die unterschiedlichen physikalischen Eigenschaften der Kristalle und des Substrates Spannungen in dem Bauelement entstehen, die zu einer großen Zahl von Kristallbaufehlern (Versetzungen), zu schlechter Haltbarkeit und oft zu nicht befriedigender Materialqualität führen. Die Lösung für dieses Problem sind Einkristalle, also Kristalle, die nicht auf andere Substrate aufwachsen, sondern auf kleine Kristallstücke, die aus dem gleichen Material bestehen wie sie selbst. Eine der vielversprechendsten Methoden zur Herstellung solcher Einkristall-Nitride ist die Ammonothermal-Synthese: In einer Atmosphäre von Ammoniak, unter sehr hohem Druck von 3000 Bar und bei rund 600 Grad Celsius entstehen in gasdicht verschließbaren Druckbehältern diese Kristalle. „Doch welche einzelnen Reaktionsschritte dabei ablaufen und warum genau die Kristalle wachsen, welche Stoffe dabei eine unterstützende Rolle spielen und wie der Stofftransport dabei stattfindet, ist noch unbekannt“, sagt Schlücker. Aufgrund der extremen Reaktionsbedingungen konnten Wissenschaftler noch nie Messungen bei den während der Reaktion ablaufenden unterschiedlichen Prozessen durchführen.
Das Forschungsprojekt der Erlanger Wissenschaftler
Die einzelnen Teilprojekte zielen auf die Erforschung unterschiedlicher Aspekte bei der Ammonothermal-Synthese. So soll zum einen hochreines Galliumnitrid erzeugt werden, das die Grundlage für die Herstellung energieeffizienter Leuchtdioden bildet. Zum anderen will das Forscherteam neue Messverfahren entwickeln, mit denen es alle Aspekte der Synthese exakt analysieren kann. Dafür haben Prof. Schlücker und der Koordinator des Projekts, Dr. Nicolas Alt, unter anderem eine „Sichtzelle“ entwickelt. Diese Zelle ermöglicht es erstmals, bei den hohen Drücken und Temperaturen die Strömungsverhältnisse und Reaktionsvorgänge in den Druckbehältern mit High-Speed-Kameras und Laserspektroskopischen Messtechniken aufzunehmen. Darauf aufbauend sollen die Kristallisationsprozesse optimiert und zugleich neue Nitridarten entwickelt werden. Geplant ist außerdem die Herstellung verbesserter Apparaturen, in denen die Nitride gezüchtet werden können.

Mehr Informationen gibt es im Internet unter http://www.ammono-for.de.

Die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), gegründet 1743, ist mit mehr als 30.000 Studierenden, rund 630 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Weitere Informationen für die Medien:

Prof. Dr. Eberhard Schlücker
Tel.: 09131/85-29450
sl@ipat.uni-erlangen.de

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.ammono-for.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie