Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbspiele mit Graphen

20.06.2012
Graphen besteht aus einer Lage von Kohlenstoffatomen, die wabenartig angeordnet sind – das besonders dünne und stabile Material birgt für Anwendungen in der Optoelektronik großes Potenzial.
Forscher vom Karlsruher Institut für Technologie, der TU Darmstadt, der University of Cambridge und IBM haben nun optoelektronische Bauteile auf Basis von Graphen entwickelt. Mit ihnen können informationstechnische Systeme langfristig kleiner und leistungsfähiger werden. In der Zeitschrift Nature Communications stellen die Forscher ihre Ergebnisse vor.

Graphen kommt im Alltag vor: Das Material steckt beispielsweise – in milliardenfach übereinanderstapelten Schichten – in den Minen herkömmlicher Bleistifte aus Graphit. Als einzelne, atomare Schicht ist Graphen ein außergewöhnlich stabiles Material, welches Hitze und Strom besonders gut leitet und zugleich Licht aufnehmen (absorbieren) und abgeben (emittieren) kann. Damit bietet das Material für Anwendungen in der Optoelektronik großes Potenzial. Die Optoelektronik befasst sich mit der Wandlung von elektrischen in optische Signale (Licht) und umgekehrt.

Eine optische Mikrokavität besteht aus zwei halbdurchlässigen Metallspiegeln, deren Abstand voneinander die Farbe des von Graphen erzeugten Lichts bestimmt. Bild: KIT

Langfristiges Ziel der Forschung ist es, optoelektronische Komponenten wie Leuchtdioden, die als Schnittstelle zwischen elektrischen und optischen Komponenten wirken, auf immer kleinere Dimensionen zu schrumpfen. Dadurch können informationstechnische Systeme langfristig deutlich kleiner und leistungsfähiger werden.

Die aktuelle Arbeit des Forscherteams um Professor Ralph Krupke vom Karlsruher Institut für Technologie (KIT) und der TU Darmstadt, Professor Hilbert von Löhneysen (KIT), Professor Andrea Ferrari von der University of Cambridge und Dr. Phaedon Avouris vom Forschungslabor der Firma IBM zeigt, dass optoelektronische Bauteile, die Licht unterschiedlicher Wellenlängen selektieren, auch mit Graphen realisierbar sind.

Die technische Herausforderung für die Forscher lag darin, zwischen Graphen und Elektroden einen Kontakt herzustellen und das Material zugleich in eine optische Mikrokavität zu integrieren. Eine optische Mikrokavität ist eine Struktur im Mikrometerbereich, die aus durch zwei für Licht unterschiedlicher Wellenlängen halbdurchlässige Spiegel mit einem genau definierten Abstand besteht. Mit dem genau festgelegten Spiegelabstand ist die Mikrokavität durchlässig für Licht einer bestimmten Farbe. Hierfür übertrug Dr. Antonio Lombardo (UC) Graphen auf das Zielsubstrat. Anschließend konnte der Physiker Michael Engel (KIT) durch komplexe Fabrikationsverfahren im Nano- und Mikrobereich Graphen mit Elektroden verbinden und zwischen zwei Silberspiegeln mit nur einigen Nanometer Abstand zueinander platzieren.

Durch das Anlegen einer elektrischen Spannung gelang es Dr. Mathias Steiner (IBM) und Michael Engel (KIT) Graphen zu erhitzen. Ähnlich wie eine Glühbirne beginnt das Material, bei hohen Temperaturen Licht zu emittieren. Die Farbe des emittierten Lichts ist jedoch, im Gegensatz zum Weißlicht einer Glühbirne, nun durch die umgebende Mikrokavität bestimmt.
Das DFG-Zentrum für funktionelle Nanostrukturen hat die Arbeit unterstützt.

Literatur:
Michael Engel, Mathias Steiner, Antonio Lombardo, Andrea C. Ferrari, Hilbert v. Löhneysen, Phaedon Avouris, and Ralph Krupke: Light–matter interaction in a microcavity-controlled graphene transistor. Nature Communications, published online 19 Juni 2012 (DOI: 10.1038/ncomms1911).
Die online-Version des Artikels ist abrufbar unter: http://www.nature.com/ncomms/journal/v3/n6/full/ncomms1911.html

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | Karlsruher Institut für Technolo
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie