Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbspiele mit Graphen

20.06.2012
Graphen besteht aus einer Lage von Kohlenstoffatomen, die wabenartig angeordnet sind – das besonders dünne und stabile Material birgt für Anwendungen in der Optoelektronik großes Potenzial.
Forscher vom Karlsruher Institut für Technologie, der TU Darmstadt, der University of Cambridge und IBM haben nun optoelektronische Bauteile auf Basis von Graphen entwickelt. Mit ihnen können informationstechnische Systeme langfristig kleiner und leistungsfähiger werden. In der Zeitschrift Nature Communications stellen die Forscher ihre Ergebnisse vor.

Graphen kommt im Alltag vor: Das Material steckt beispielsweise – in milliardenfach übereinanderstapelten Schichten – in den Minen herkömmlicher Bleistifte aus Graphit. Als einzelne, atomare Schicht ist Graphen ein außergewöhnlich stabiles Material, welches Hitze und Strom besonders gut leitet und zugleich Licht aufnehmen (absorbieren) und abgeben (emittieren) kann. Damit bietet das Material für Anwendungen in der Optoelektronik großes Potenzial. Die Optoelektronik befasst sich mit der Wandlung von elektrischen in optische Signale (Licht) und umgekehrt.

Eine optische Mikrokavität besteht aus zwei halbdurchlässigen Metallspiegeln, deren Abstand voneinander die Farbe des von Graphen erzeugten Lichts bestimmt. Bild: KIT

Langfristiges Ziel der Forschung ist es, optoelektronische Komponenten wie Leuchtdioden, die als Schnittstelle zwischen elektrischen und optischen Komponenten wirken, auf immer kleinere Dimensionen zu schrumpfen. Dadurch können informationstechnische Systeme langfristig deutlich kleiner und leistungsfähiger werden.

Die aktuelle Arbeit des Forscherteams um Professor Ralph Krupke vom Karlsruher Institut für Technologie (KIT) und der TU Darmstadt, Professor Hilbert von Löhneysen (KIT), Professor Andrea Ferrari von der University of Cambridge und Dr. Phaedon Avouris vom Forschungslabor der Firma IBM zeigt, dass optoelektronische Bauteile, die Licht unterschiedlicher Wellenlängen selektieren, auch mit Graphen realisierbar sind.

Die technische Herausforderung für die Forscher lag darin, zwischen Graphen und Elektroden einen Kontakt herzustellen und das Material zugleich in eine optische Mikrokavität zu integrieren. Eine optische Mikrokavität ist eine Struktur im Mikrometerbereich, die aus durch zwei für Licht unterschiedlicher Wellenlängen halbdurchlässige Spiegel mit einem genau definierten Abstand besteht. Mit dem genau festgelegten Spiegelabstand ist die Mikrokavität durchlässig für Licht einer bestimmten Farbe. Hierfür übertrug Dr. Antonio Lombardo (UC) Graphen auf das Zielsubstrat. Anschließend konnte der Physiker Michael Engel (KIT) durch komplexe Fabrikationsverfahren im Nano- und Mikrobereich Graphen mit Elektroden verbinden und zwischen zwei Silberspiegeln mit nur einigen Nanometer Abstand zueinander platzieren.

Durch das Anlegen einer elektrischen Spannung gelang es Dr. Mathias Steiner (IBM) und Michael Engel (KIT) Graphen zu erhitzen. Ähnlich wie eine Glühbirne beginnt das Material, bei hohen Temperaturen Licht zu emittieren. Die Farbe des emittierten Lichts ist jedoch, im Gegensatz zum Weißlicht einer Glühbirne, nun durch die umgebende Mikrokavität bestimmt.
Das DFG-Zentrum für funktionelle Nanostrukturen hat die Arbeit unterstützt.

Literatur:
Michael Engel, Mathias Steiner, Antonio Lombardo, Andrea C. Ferrari, Hilbert v. Löhneysen, Phaedon Avouris, and Ralph Krupke: Light–matter interaction in a microcavity-controlled graphene transistor. Nature Communications, published online 19 Juni 2012 (DOI: 10.1038/ncomms1911).
Die online-Version des Artikels ist abrufbar unter: http://www.nature.com/ncomms/journal/v3/n6/full/ncomms1911.html

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | Karlsruher Institut für Technolo
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie