Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals wandernde Defekte im "Wundermaterial" Graphen analysiert

30.05.2014

Unvollkommenheiten und Defekte in der atomaren Anordnung eines Kristalls sind für viele Materialeigenschaften verantwortlich.

Die Wanderung (Diffusion) dieser Defekte bewirkt zudem Veränderungen in der Mikrostruktur von Festkörpern. Jedoch ist die Abbildung von nicht-periodischen atomaren Anordnungen in konventionellen Materialien und deren Dynamik eine große experimentelle Herausforderung.


Das animierte gif-File zeigt die Diffusion, eine Doppel-Fehlstelle im Graphen, über einen längeren Zeitraum beobachtet. Copyright: Universität Wien

Nun ist es Physikern um Jannik Meyer von der Universität Wien zum ersten Mal gelungen, die Diffusion einer Doppel-Fehlstelle im "Wundermaterial" Graphen über einen längeren Zeitraum zu beobachten. Die Studie wurde in dem international anerkannten Journal Nature Communications veröffentlicht.

In jedem Material finden sich Defekte auf der atomaren Skala. Für konventionelle Materialien bleiben sie jedoch – außer an der Oberfläche – in einer viel größeren Gruppe von perfekt angeordneten Atomen des Kristalls verborgen. Für ein zweidimensionales Material wie Graphen ist das jedoch anders.

Graphen ist nur ein Atom dick und seine Atome sind in einer Bienenwaben-artigen Struktur angeordnet. Seit seiner Entdeckung 2004 werden immer mehr außergewöhnliche Eigenschaften des Materials erforscht. Graphen ist härter als Diamant und leitet Strom besser als Kupfer, trotzdem ist es durchsichtig und überaus flexibel. Da sich alle Atome in Graphen an der Oberfläche befinden, sind die einzelnen Atome und Defekte im hochauflösenden Elektronenmikroskop direkt sichtbar. Alle Atome interagieren mit ihrer Umgebung.

Aus Sechsecken werden Fünf- und Siebenecken

Der Defekt, auf den sich die Wissenschafter in der jüngst veröffentlichten Studie konzentrieren, ist eine Fehlstelle aus zwei benachbarten fehlenden Atomen im Kristallgitter. In der stabilsten Form dieses Defekts transformieren die Sechsecke, die im perfekten Gitter dominieren, in vier Fünfecke und vier Siebenecke (Kohlenstoffringe mit jeweils fünf und sieben Atomen). In früheren Experimenten sind einzelne Defekte während der Beobachtung sehr schnell größer geworden oder haben wieder perfektes Graphen geformt. Das machte eine kontinuierliche Abbildung der Diffusion dieser Fehlstellen über längere Zeit unmöglich.

Einzigartiges Elektronenmikroskop ermöglicht längere Beobachtungszeiträume

Die Studie wurde mit dem neuen Nion UltraSTEM-Elektronenmikroskop durchgeführt, das 2013 für die Professur von Jannik Meyer von der Universität Wien angekauft wurde. Es zeichnet sich unter anderem durch Ultrahoch-Vakuum-Bedingungen und niedrige Beschleunigungsspannungen aus. Dadurch sind die Defektstrukturen über längere Zeiträume stabil, so dass Statistiken über die Defektbewegung möglich wurden. Die Wissenschafter benutzten den Elektronenstrahl des Mikroskops, um den Defekt zwischen verschiedenen Anordnungen zu transformieren. Das hatte eine Wanderung der Fehlstelle von einem Moment zum nächsten zur Folge.

"Es war faszinierend zum ersten Mal zu sehen, wie sich ein Defekt auf atomarer Ebene fortbewegt und sich verändert, während wir ihn beobachten", so Jani Kotakoski, Post-Doc an der Universität Wien und Erstautor der Studie. Eine sorgsame Analyse des Pfads, den der Defekt auf seiner Reise durch den Kristall nimmt, hat eine Zufallsbewegung zum Vorschein gebracht. "Unsere Arbeit öffnet neue Möglichkeiten für die direkte Untersuchung von Defektdiffusion in niedrigdimensionalen Materialien, die wiederum neue Einblicke in die Defektdynamik in Festkörpern bringen können", resümiert der Autor.

Publikation in Nature Communications:
Imaging Atomic-Level Random Walk of a Point Defect in Graphene: J. Kotakoski, C. Mangler & J. C. Meyer. Nature Communications, 29. Mai 2014.
DOI: 10.1038/ncomms4991

Wissenschaftliche Kontakte:
Dr. Jani Kotakoski
Physik Nanostrukturierter Materialien
Universität Wien
1090 Wien, Boltzmanngasse 5
M +43-664-60277-514 44
jani.kotakoski@univie.ac.at

Univ.-Prof. Dr. Jannik Meyer
Physik Nanostrukturierter Materialien
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-728 10
jannik.meyer@univie.ac.at

Rückfragehinweis:
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.700 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie