Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Engineers Show Feasibility of Superfast Materials for Computing

15.02.2013
University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their edges, but act as an insulator inside. These materials, called organic topological insulators, could shuttle information at the speed of light in quantum computers and other high-speed electronic devices.

The study published this week in the journal Nature Communications will help pioneer a new field of research in materials science, in the same way organic materials lowered the cost and eased production of light-emitting diodes and solar cells, says senior author Feng Liu, professor and chair of materials science and engineering.


Zhengfei Wang and Feng Liu, University of Utah.

University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their molecular edges, but act as an insulator inside. Called organic topological insulators, these materials are made from a thin molecular sheet (left) that resembles chicken wire and conducts electricity on its right edge (blue line) -- with the electrons carrying more information in the form of "up" spin. These new materials could be used to shuttle information at the speed of light in quantum computers due to the unique physical behavior a special class of electrons called Dirac fermions, depicted (right) in a plot of their energy and momentum.

“This is the first demonstration of the existence of topological insulators based on organic materials,” says Liu. “Our findings will broaden the scope and impact of these materials in various applications from spintronics to quantum computing.”

While other researchers still must synthesize the new organic topological insulators, Liu says his team’s previous work “shows we can engineer an interface between two different thin films to create topological insulators,” in which electrons known as Dirac fermions move along the interface between two films, Liu adds.

Liu and his co-workers at the University of Utah’s College of Engineering performed theoretical calculations to predict the existence of an organic topological insulator using molecules with carbon-carbon bonds and carbon-metal bonds, called an organometallic compound. For this new study, the team investigated how Dirac fermions move along the edges of this compound, which looks like a sheet of chicken wire.

To generate a topological insulator, scientists have to design materials that can transmit fermions. In a topological insulator, fermions behave like a massless or weightless packet of light, conducting electricity as they move very fast along a material’s surface or edges. When these fermions venture inside the material, however, this “weightless” conductivity screeches to a halt.

What’s more, Dirac fermions have a property called spin, or angular momentum around the particle’s axis that behaves like a magnetic pole. This property gives scientists another way to place information into a particle because the spin can be switched “up” or “down.” Such a mechanism could be useful for spin-based electronic devices, called spintronics, which can store information both in the charge and the spin of electrons.

“We have demonstrated a system with a special type of electron – a Dirac fermion – in which the spin motion can be manipulated to transmit information,” Liu says. “This is advantageous over traditional electronics because it’s faster and you don’t have to worry about heat dissipation.”

Earlier this year, Liu and his team discovered a “reversible” topological insulator in a system of bismuth-based compounds in which the behavior of ordinary or Dirac fermions could be controlled at the interface between two thin films. Bismuth is a metal best known as an ingredient of Pepto-Bismol. These theoretical predictions were confirmed experimentally by co-authors from Shanghai Jiaotong University in China.

Although inorganic topological insulators based on different materials have been studied for the last decade, organic or molecular topological insulators have not.

Liu conducted the study with Zhengfei Wang and Zheng Liu, both postdoctoral fellows in materials science and engineering at the University of Utah. The study was funded primarily by the U.S. Department of Energy, with additional support from the Army Research Laboratory and from the National Science Foundation through the University of Utah’s Materials Research Science and Engineering Center.

University of Utah College of Engineering
72 S. Central Campus Dr., Room 1650 WEB
Salt Lake City, UT 84112
801-581-6911 fax: 801-581-8692
www.coe.utah.edu
Contacts:
-- Feng Liu, professor and chair of materials science and engineering –
cell 801-815-7659, office 801-587-7719, fliu@eng.utah.edu
-- Aditi Risbud, senior communications and marketing officer, College of Engineering – cell 213-400-5815, office 801-587-9038, aditi.risbud@coe.utah.edu

Aditi Risbud | Newswise
Further information:
http://www.utah.edu
http://www.coe.utah.edu

More articles from Materials Sciences:

nachricht OSU researchers prove magnetism can control heat, sound
29.05.2015 | Ohio Supercomputer Center

nachricht Engineering phase changes in nanoparticle arrays
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Galapagos-Vulkanismus: Überraschend explosiv

Internationales Vulkanologen-Team präsentiert neue Erkenntnisse zur Eruptions-Geschichte

Vor 8 bis 16 Millionen Jahren gab es im Gebiet der heutigen Galapagos-Inseln einen hochexplosiven Vulkanismus. Das zeigt erstmals die Auswertung von...

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikhael Subotzky und Patrick Waterhouse erhalten den Deutsche Börse Photography Prize 2015

29.05.2015 | Förderungen Preise

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungsnachrichten

HDT - Sommerakademie 2015 für Entwickler und Ingenieure

29.05.2015 | Seminare Workshops