Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Empa-Forschende nutzen Elektronenstrahlen für chemische Reaktionen

12.04.2011
Elektronenmikroskope nutzen einen fokussierten Elektronenstrahl, um winzige Objekte sichtbar zu machen.

Wird das Instrument mit einem Gasinjektionssystem kombiniert, lassen sich Materialproben manipulieren und nanometerfeine Oberflächenstrukturen darauf «schreiben». Empa-Forschende haben mit Wissenschaftlern der EPFL diese Methode nun genutzt, um Laser zu verbessern.

«Vertical Cavity Surface Emitting Laser», kurz VCSELs, sind Halbleiterlaser, die häufig in der Datenübertragung eingesetzt werden, beispielsweise für Kurzstreckenverbindungen wie Gigabit-Ethernet. Diese Laser sind bei Telekomfirmen beliebt, weil sie wenig Energie verbrauchen sowie einfach und in Stückzahlen von mehreren tausend auf einem einzelnen Wafer produziert werden können.

Solche VCSELs können jedoch eine Schwäche aufweisen: Aufgrund der zylindrischen Struktur, in der die Laser auf dem Wafer aufgebaut werden, kann die Polarisation des ausgesendeten Lichts während des Betriebs ändern. Polarisation ist eine Eigenschaft gewisser Wellen, so auch der Lichtwelle, und beschreibt die Richtung ihrer Schwingungen. Eine stabile Polarisation ist nötig, um VCSELs in optische Systeme wie Lichtwellenleiter einzubauen.

Das Team um den Empa-Forscher Ivo Utke konnte zusammen mit Wissenschaftlern des Laboratory of Physics of Nanostructures an der EPFL nun mit einer Methode namens FEBIP («Focused Electron Beam Induced Processing», durch fokussierten Elektronenstrahl induzierte Prozesse) Abhilfe schaffen. «Wir haben mit einem Elektronenstrahl flache Gitterstrukturen auf die VCSELs geschrieben», beschreibt Utke die Lösung. «Die Gitter konnten die Polarisation des Laserlichts effektiv stabilisieren.» Die Arbeit ist vor kurzem in der Fachzeitschrift «Nanoscale» als «advanced online publication» erschienen.

Klein, minimal-invasiv, direkt

FEBIP eignet sich für das Prototyping von Nanobauteilen, um konkrete Fragen und Probleme aus der angewandten Nanoelektronik, Nanophotonik sowie Nanobiologie zu lösen. Dazu werden zu einer Probe, die sich bereits in der Vakuumkammer des Mikroskops befindet, geeignete Gasmoleküle injiziert. Diese lagern sich zunächst reversibel auf der Probe ab. Der fokussierte Elektronenstrahl, der sonst dazu dient, die Objekte sichtbar zu machen, induziert nun chemische Reaktionen der Gasmoleküle – und zwar nur dort, wo er auftrifft.

Die entstehenden nichtflüchtigen Verbindungen bleiben dann dauerhaft auf der Probe. «Mit Hilfe des fein positionierbaren Elektronenstrahls lassen sich Oberflächenstrukturen nanometergenau und in nahezu beliebigen dreidimensionalen Formen entfernen und auftragen», sagt Utke. «FEBIP könnten schon bald zu einer echten Nanofabrikationsplattform werden, um minimal-invasiv und direkt Nanostrukturen herzustellen, ohne dass die durchaus grossen Investitionen eines Reinraums nötig wären.»

Literaturhinweis
«Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry», I. Utke, M. Jenke, C. Roeling, P. H. Thiesen, V. Iakovlev, A. Syrbu, A. Mereuta, A. Caliman, E. Kapon, Nanoscale – a journal of The Royal Society of Chemistry (2011), DOI:10.1039/C1NR10047E
Weitere Informationen
Dr. Ivo Utke, Werkstoff- und Nanomechanik, Tel. +41 33 228 29 57, ivo.utke@empa.ch

Beatrice Huber | idw
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik