Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrostatisches Materialdesign: TU Graz zeigt fundamental neuen Ansatz

11.05.2017

Forschende des Instituts für Festkörperphysik stellen in Advanced Materials einen radikal neuen Ansatz zur gezielten Gestaltung optischer und elektronischer Eigenschaften von Materialien vor.

Herkömmlicherweise wird computergestütztes Materialdesign dazu genutzt, um bereits existierende Materialien zu verbessern und weiterzuentwickeln. Simulationen erlauben einen tiefen Einblick in die quantenmechanischen Effekte, die letztendlich die Materialeigenschaften bestimmen.


3D Absicht von manipulierter energetischer Landschaft innerhalb eines ausgedehnten Materials.

© TU Graz


Egbert Zojer und Viktoria Obersteiner, die Hauptautoren des in Advanced Materials erschienenen paper.

© TU Graz

Egbert Zojer geht einen Schritt weiter: Mit seinem Team vom Institut für Festkörperphysik der TU Graz nutzt er Computersimulationen, um ein gänzlich neues Konzept zur Kontrolle elektronischer Materialeigenschaften vorzuschlagen.

Vermeintlich störende Einflüsse, die sich aus der regelmäßigen Anordnung polarer Elemente ergeben, nämlich sogenannte kollektive elektrostatische Effekte, nutzt die Gruppe zur gezielten Manipulation von Materialeigenschaften. Dass der radikal neue Ansatz auch für dreidimensionale Materialien funktioniert, demonstriert das Grazer Team in Advanced Materials, dem laut Google Scholar international wichtigsten Journal im Bereich Materialforschung.

Manipulation der energetischen Materiallandschaft

„Der grundlegende Ansatz unserer Forschung zum elektrostatischen Design von Materialien ist es, die elektronischen Eigenschaften insbesondere von halbleitenden Materialien so zu modifizieren, dass kontrolliert Energieniveaus verschoben werden können. Dabei wenden wir Effekte an, die sich aus der periodischen Anordnung von dipolaren Gruppen ergeben. Wir versuchen also nicht, Wege zu finden, diese gerade an Grenzflächen unvermeidlichen Effekte zu umgehen, sondern nutzen sie ganz gezielt für unsere Zwecke aus“, erklärt Egbert Zojer.

Schon länger widmet sich eine Gruppe um Zojer diesem Forschungsgebiet. Der erste Schritt war das elektrostatische Design von molekularen Monolagen, etwa auf Goldelektroden. Experimente haben gezeigt, dass die vorhergesagten Energieverschiebungen innerhalb der Schichten tatsächlich auftreten und sich der Ladungstransport durch die Monolagen gezielt manipulieren lässt.

Auch die elektronischen Eigenschaften zweidimensionaler Materialien, wie beispielsweise Graphen, lassen sich über kollektive elektrostatische Effekte kontrollieren. In der Publikation in Advanced Materials demonstrieren die Dissertantin Veronika Obersteiner, Egbert Zojer und weitere Kolleginnen und Kollegen aus der Arbeitsgruppe das volle Potential des Konzepts, indem sie es auf dreidimensionale Materialien erweitern.

„Für das Beispiel dreidimensionaler kovalenter organischer Netzwerke zeigen wir, wie man mittels kollektiver elektrostatischer Effekte die energetische Landschaft innerhalb eines ausgedehnten Materials so manipuliert, dass räumlich begrenzte Pfade für Elektronen und Löcher entstehen. So kann man beispielsweise gezielt Ladungsträger trennen und die elektronischen Materialeigenschaft quasi nach Lust und Laune gestalten.“, so Zojer.

Das vorliegende Konzept kann insbesondere für Solarzellen interessant sein. In klassischen organischen Solarzellen nutzt man chemisch unterschiedliche Elemente, so genannte Donatoren und Akzeptoren, zum Auftrennen der durch den Absorptionsprozess entstandenen Elektron-Loch Paare. Im hier vorgeschlagenen Zugang funktioniert die dazu nötige lokale Verschiebung der Energieniveaus aufgrund periodisch eingebauter polarer Gruppen.

Die halbleitenden Bereiche, auf die die Elektronen bzw. die Löcher verschoben werden, sind dabei chemisch ident. „Wir können so die Energieniveaus durch Variation der Dipoldichte effizient und quasi kontinuierlich einstellen. Diese Arbeit ist der bisherige Höhepunkt unserer intensiven Forschung am elektrostatischen Materialdesign“, sagt Zojer.

Mit elektrostatischem Design in 3D-Systemen können auch komplexe Quantenstrukturen realisiert werden, wie Quantenschachbretter oder Quantenkaskaden. „Nur die Phantasie der Materialdesigner setzt unserem neuen Konzept Grenzen“, betonen Zojer und Obersteiner unisono.

Zur Originalpublikation:
Electrostatic Design of 3D Covalent Organic Networks
Advanced Materials | DOI: 10.1002/adma.201700888
http://onlinelibrary.wiley.com/doi/10.1002/adma.201700888/full
Weiteres Bildmaterial verfügbar unter http://bit.ly/2q5FyCh

Dieses Forschungsprojekt ist im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz.

Kontakt:
Egbert ZOJER
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institut für Festkörperphysik
Tel.: +43 316 873 8475
E-Mail: egbert.zojer@tugraz.at

Mag. Susanne Eigner | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics