Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronik kommt zu Papier

21.02.2013
Papier dient als leichtes und faltbares Rohmaterial, um auf kostengünstige und einfache Weise elektrisch leitende Strukturen zu erzeugen

Papier wird zum Hightech-Werkstoff. Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm haben gezielt leitfähige Strukturen in Papier erzeugt, und zwar auf sehr einfache Weise: Mit einem herkömmlichen Tintenstrahldrucker druckten sie einen Katalysator auf einen Papierbogen und erhitzten das Blatt anschließend. Dabei verwandelten sich die bedruckten Bereiche in leitfähigen Graphit. Papier eignet sich mithin als preiswerter, leichter und flexibler Ausgangsstoff für elektronische Bauteile in Alltagsgegenständen.


Ein einfacher Weg zur Elektronik: Ein Tintenstrahldrucker trägt zunächst einen Katalysator in einem gewünschten Muster auf ein Papier auf (A). Hitze wandelt die bedruckten Stellen in einer Stickstoff-Atmosphäre in leitfähigen Graphit und die nicht bedruckten Stellen in amorphen Kohlenstoff um (B). Dass tatsächlich nur die bedruckten Bereiche leitfähig sind, zeigt die anschließende Elektrolyse (C), bei der die leitfähige Struktur als Kathode dient und nur das mit Katalysator behandelte Muster mit Kupfer überzogen wird. © MPI für Kolloid- und Grenzflächenforschung

Mit kostengünstigen und biegsamen Mikrochips erschließen sich der Elektronik Anwendungen, für die Silicium-Chips zu sperrig und teuer sind und für die die inzwischen weit verbreiteten RFID-Chips nicht genug leisten: Kleidung etwa, die Körperfunktionen kontrolliert, flexible Bildschirme oder Etiketten, die über ein Produkt mehr verraten als sich auf die Verpackung drucken lässt.

Zwar entwickeln weltweit zahlreiche Forscher erfolgreich flexible Chips, sie setzen dabei aber fast immer auf Kunststoffe als Träger und nutzen teilweise auch Polymere und andere organische Moleküle als leitfähige Komponenten. Diese Materialien erfüllen viele Bedingungen, die an sie gestellt werden, sie sind aber durchweg hitzeempfindlich. „Ihre Verarbeitung lässt sich nicht in die übliche Produktion von Elektronik integrieren, weil dabei Temperaturen über 400 Grad Celsius auftreten“, sagt Cristina Giordano, die am Max-Planck-Institut für Kolloid- und Grenzflächenforschung eine Arbeitsgruppe leitet und nun eine Alternative präsentiert.

Die Kohlenstoff-Elektronik, die Giordano und ihre Kollegen aus Papier herstellen, halten dagegen selbst Temperaturen um die 800 Grad Celsius aus und würden die gängigen Prozesse nicht durcheinander bringen. Und das ist nicht der einzige Trumpf einer Elektronik aus Papier: Das leichte und preiswerte Material lässt sich auch denkbar einfach verarbeiten, und das sogar zu dreidimensionalen leitfähigen Strukturen.

In Graphit verwandeln die Potsdamer Forscher die Cellulose des Papiers mit Eisennitrat als Katalysator. „Mit einem handelsüblichen Tintenstrahldrucker tragen wir eine Lösung des Katalysators in einem fast beliebig feinen Muster auf ein Blatt“, sagt Stefan Glatzel, der die Elektronik in seiner Doktorarbeit aufs Papier gebracht hat. Wenn die Forscher die mit Katalysator bedruckten Bögen in einer Stickstoff-Atmosphäre nun auf 800 Grad Celsius erhitzen, setzt die Cellulose solange Wasser frei, bis nur noch reiner Kohlenstoff übrig bleibt. Während in den bedruckten Bereichen jedoch eine elektrisch leitende Mischung aus den regelmäßig strukturierten Kohlenstoffblättern des Graphit und Eisencarbid entsteht, lässt die Hitze die restlichen Gebiete als Kohlenstoff ohne regelmäßige Struktur zurück, der nicht leitfähig ist.

Dass auf diese Weise tatsächliche präzise geformte Leiterbahnen entstehen, bewiesen die Forscher in einem einfachen Experiment: Sie druckten den Katalysator zunächst im Muster der Minerva, des filigranen Symbols der Max-Planck-Gesellschaft, auf eine Blatt Papier und verwandelten das Muster in Graphit. Anschließend verwendeten sie die Graphit-Minerva als Kathode, die sie elektrolytisch mit Kupfer überzogen. Nur auf den Linien, die der Drucker vorgezeichnet hatte, schied sich dabei das Metall ab.
Mit einem weiteren Versuch demonstrierte das Potsdamer Team, wie sich mit ihrer Methode dreidimensionale, leitfähige Strukturen erzeugen lassen. Dafür falteten sie einen Papierbogen zu einem Origami-Kranich, den sie mit dem Katalysator tränkten und zu Graphit buken. „Die dreidimensionale Form blieb dabei vollkommen erhalten, bestand nach dem Prozess aber durch und durch aus leitfähigem Kohlenstoff“, sagt Stefan Glatzel. Das zeigte er wiederum, indem er den Origami-Vogel elektrolytisch mit Kupfer überzog. Jeder Fleck der Bastelarbeit präsentierte sich danach in kupfernem Glanz.

Wie die katalytische Umsetzung abläuft, klärten die Max-Planck-Wissenschaftler schließlich auch noch auf. Sie drehten mit einem Transmissions-Elektronenmikroskop nämlich einen Film des Prozesses und beobachteten auf diese Weise, dass der Katalysator in Form von Nanotröpfchen einer Eisen-Kohlenstoffschmelze durch das Papier wandert und dabei Graphit zurück lässt. Auch dieser Aspekt könnte für mögliche Anwendungen des Verfahrens interessant sein. Denn wenn Chemiker besser verstehen, was dabei passiert, können sie die Reaktion auch genauer steuern. Und das gilt nicht nur für die Produktion von Papier-Elektronik sondern auch für die Herstellung von Kohlenstoff-Nanoröhrchen, wo Eisen bereits seit längerem als Katalysator eingesetzt wird.

Aus dünnem Papier könnten sich Graphen-Strukturen erzeugen lassen

Mit dem Video der Graphit-Bildung haben die Forscher einen umfassenden Einblick in die katalytische Umwandlung gewonnen. Aufbauend auf diesen Ergebnissen werden sie nun versuchen, einen Disput über den Mechanismus der Umsetzung zu beenden. Einige ihrer Fachkollegen vermuten nämlich, dass die Reaktion im festen Zustand abläuft. „Unsere Studie deutet jedoch auf die Bildung einer Schmelze, eines sogenannten Eutektikums, hin.“ sagt Cristina Giordano. „Interessant ist hierbei, dass Eisen allein erst bei rund 700 Grad höheren Temperaturen schmilzt.“

Warum die Mischung aus Eisen und Kohlenstoff bei relativ niedrigen Temperaturen schmilzt, untersucht das Team von Christina Giordano nun näher. Möglicherweise lässt sich der Effekt nämlich auch an anderer Stelle ausnutzen. Zudem werden die Forscher weiter das Potenzial der Papier-Elektronik ausloten. So wollen sie nicht nur die magnetischen Eigenschaften ausnutzen, die das Material dem Eisencarbid verdankt. Indem sie die Papierstärke reduzieren, und den Prozess geschickt steuern, wollen sie auch Leiterbahnen aus Graphen erzeugen. Bei Graphen handelt es sich um ein einzelnes der Kohlenstoffblätter, die sich im Graphit übereinander stapeln. „Außerdem werden wir Graphit mit anderen Materialien kombinieren“, erklärt Giordano. Der Tintenstrahldrucker macht es möglich. Denn aus seinen Kartuschen lassen sich außer der Eisennitrat-Lösung auch Lösungen anderer Metallsalze oder Dispersionen, die im Wasser feinverteilte Metallpartikel enthalten, zu Papier bringen.

Ansprechpartner

Dr. Cristina Giordano,
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9509
E-Mail: cristina.giordano@­mpikg.mpg.de
Katja Schulze,
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
E-Mail: katja.schulze@­mpikg.mpg.de
Originalpublikation
Stefan Glatzel, Zoë Schnepp und Cristina Giordano
From Paper to Structured Carbon Electrodes by Inkjet Printing
Angewandte Chemie International Edition, online veröffentlicht, 17. Januar 2013; DOI: 10.1002/anie.201207693

Dr. Cristina Giordano | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6963505/Papier_Elektronik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

nachricht Schnell, berührungslos: Dehnungsmessverfahren für thermisch-mechanisch hoch belastete Werkstoffe
20.06.2017 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie

Innovative High Power LED Light Engine für den UV Bereich

22.06.2017 | Physik Astronomie

Wie Menschen Schäden an Gebäuden wahrnehmen

22.06.2017 | Architektur Bauwesen