Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronik aus zweidimensionalem Elektronengas

04.03.2014

Ein neues Material könnte die Tür zu einer neuen Art der Elektronik öffnen: Forschungsteams der TU Wien konnten in Strontium-Titanoxid ein stabiles zweidimensionales Elektronengas herstellen.

Normalerweise erzeugt man Mikroelektronik-Bauteile aus Silizium oder ähnlichen Halbleitern. Seit einiger Zeit wird allerdings intensiv an den elektronische Eigenschaften von Metalloxiden geforscht. Sie sind komplizierter, aber genau dadurch hat man auch mehr Möglichkeiten, ihre Eigenschaften zu verändern und genau nach Wunsch anzupassen.


Strontium-Titanoxid

TU Wien


Zhiming Wang im Labor an der TU Wien

TU Wien

Ein wichtiger Durchbruch gelang nun an der TU Wien: In Strontium-Titanoxid konnte ein stabiles zweidimensionales Elektronengas hergestellt werden. In einer Ebene knapp unterhalb der Oberfläche können sich die Elektronen frei bewegen und dabei unterschiedliche Quantenzustände einnehmen. Dadurch bietet sich das Material nicht nur als mögliche Alternative zu gewöhnlichen Halbleitern an, zusätzlich sollen sich auch noch weitere exotische Effekte erzielen lassen, die in Standard-Halbleitermaterialien nicht vorkommen – etwa Supraleitung, Thermoelektrizität oder Magnetismus.

Die äußerste Atomschicht und das Innere

Theoretische Berechnungen und experimentelle Arbeiten gingen bei diesem Forschungsprojekt Hand in Hand: Zhiming Wang aus dem Team von Prof. Ulrike Diebold (Institut für Angewandte Physik, TU Wien) führen die experimentellen Messungen durch, zum Teil auch am Synchrotron des BESSY in Berlin. Zhicheng Zhong aus der Forschungsgruppe von Prof. Karsten Held (Institut für Festkörperphysik, TU Wien) untersuchten das Material in Computersimulationen.

Die Atome von Strontium-Titanoxid sind nicht überall genau gleich angeordnet: Wenn man einen Kristall dieses Materials in der richtigen Richtung schneidet, dann ordnen sich die Atome an der Oberfläche anders an als die Atome im Inneren des Materials. „Während im Inneren jedes Titanatom sechs Sauerstoffatome als Nachbarn hat, ist an der Oberfläche jedes Titanatom nur mit vier Sauerstoffatomen verbunden“, erklärt Ulrike Diebold. Genau dadurch bleibt die Oberfläche stabil und wird nicht, wie andere vergleichbare Materialien, durch den Kontakt mit Wasser oder Sauerstoff zerstört. 

Wandernder Sauerstoff

Erstaunliches geschieht, wenn man das Material mit kurzwelligem, energiereicher Strahlung beleuchtet: „Durch die Strahlung können Sauerstoffatome aus der Oberfläche herausgelöst werden“, erklärt Ulrike Diebold. Wenn das geschieht, kommen allerdings Sauerstoffatome aus dem Inneren des Materials nach und wandern an die Oberfläche. Dadurch entsteht dann im Inneren, ganz knapp unter der Oberfläche, ein Mangel an Sauerstoffatomen und ein Überschuss an Elektronen.

„Diese Elektronen, innerhalb einer zweidimensionalen Schicht, knapp unterhalb der Oberfläche, können sich recht frei bewegen – man spricht in diesem Fall von einem Elektronengas“, erklärt Karsten Held. Hinweise für das Entstehen eines zweidimensionalen Elektronengases in ähnlichen Materialien gab es bereits – doch die Herstellung eines stabilen, haltbaren Elektronengases war bisher noch nie gelungen.

Bemerkenswert ist auch, dass sich die Eigenschaften diese Elektronen sehr fein einstellen lassen: Je nachdem wie intensiv man das Material bestrahlt, lässt sich die Anzahl der Elektronen variieren. Auch durch den Einbau anderer Atomsorten kann man die elektronischen Eigenschaften anpassen. „Wichtig in der Festkörperphysik ist die sogenannte Bandstruktur des Materials – der Zusammenhang zwischen der Energie und dem Impuls der Elektronen. Das erstaunliche an der untersuchten Oberfläche ist, dass sich hier die Bandstruktur von Quantenniveau zu Quantenniveau vollkommen ändert.“, erklärt Karsten Held.

Im Elektronengas des neuen Materials lässt sich eine Vielfalt verschiedener elektronischer Strukturen finden, darunter auch solche, die ganz spezielle magnetische Effekte oder Supraleitung möglich erscheinen lassen. Diese vielversprechenden Eigenschaften von Strontium-Titanoxid sollen nun in weiteren Forschungsarbeiten untersucht werden. Durch äußere elektrische Felder oder das Aufbringen zusätzlicher Metallatome an der Oberfläche könnte das neue Material, so hofft man an der TU Wien, noch weitere Geheimnisse preisgeben.

Rückfragehinweise:

Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
+43-1- 58801-13425
ulrike.diebold@tuwien.ac.at

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/elektronengas/ weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics