Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronik aus zweidimensionalem Elektronengas

04.03.2014

Ein neues Material könnte die Tür zu einer neuen Art der Elektronik öffnen: Forschungsteams der TU Wien konnten in Strontium-Titanoxid ein stabiles zweidimensionales Elektronengas herstellen.

Normalerweise erzeugt man Mikroelektronik-Bauteile aus Silizium oder ähnlichen Halbleitern. Seit einiger Zeit wird allerdings intensiv an den elektronische Eigenschaften von Metalloxiden geforscht. Sie sind komplizierter, aber genau dadurch hat man auch mehr Möglichkeiten, ihre Eigenschaften zu verändern und genau nach Wunsch anzupassen.


Strontium-Titanoxid

TU Wien


Zhiming Wang im Labor an der TU Wien

TU Wien

Ein wichtiger Durchbruch gelang nun an der TU Wien: In Strontium-Titanoxid konnte ein stabiles zweidimensionales Elektronengas hergestellt werden. In einer Ebene knapp unterhalb der Oberfläche können sich die Elektronen frei bewegen und dabei unterschiedliche Quantenzustände einnehmen. Dadurch bietet sich das Material nicht nur als mögliche Alternative zu gewöhnlichen Halbleitern an, zusätzlich sollen sich auch noch weitere exotische Effekte erzielen lassen, die in Standard-Halbleitermaterialien nicht vorkommen – etwa Supraleitung, Thermoelektrizität oder Magnetismus.

Die äußerste Atomschicht und das Innere

Theoretische Berechnungen und experimentelle Arbeiten gingen bei diesem Forschungsprojekt Hand in Hand: Zhiming Wang aus dem Team von Prof. Ulrike Diebold (Institut für Angewandte Physik, TU Wien) führen die experimentellen Messungen durch, zum Teil auch am Synchrotron des BESSY in Berlin. Zhicheng Zhong aus der Forschungsgruppe von Prof. Karsten Held (Institut für Festkörperphysik, TU Wien) untersuchten das Material in Computersimulationen.

Die Atome von Strontium-Titanoxid sind nicht überall genau gleich angeordnet: Wenn man einen Kristall dieses Materials in der richtigen Richtung schneidet, dann ordnen sich die Atome an der Oberfläche anders an als die Atome im Inneren des Materials. „Während im Inneren jedes Titanatom sechs Sauerstoffatome als Nachbarn hat, ist an der Oberfläche jedes Titanatom nur mit vier Sauerstoffatomen verbunden“, erklärt Ulrike Diebold. Genau dadurch bleibt die Oberfläche stabil und wird nicht, wie andere vergleichbare Materialien, durch den Kontakt mit Wasser oder Sauerstoff zerstört. 

Wandernder Sauerstoff

Erstaunliches geschieht, wenn man das Material mit kurzwelligem, energiereicher Strahlung beleuchtet: „Durch die Strahlung können Sauerstoffatome aus der Oberfläche herausgelöst werden“, erklärt Ulrike Diebold. Wenn das geschieht, kommen allerdings Sauerstoffatome aus dem Inneren des Materials nach und wandern an die Oberfläche. Dadurch entsteht dann im Inneren, ganz knapp unter der Oberfläche, ein Mangel an Sauerstoffatomen und ein Überschuss an Elektronen.

„Diese Elektronen, innerhalb einer zweidimensionalen Schicht, knapp unterhalb der Oberfläche, können sich recht frei bewegen – man spricht in diesem Fall von einem Elektronengas“, erklärt Karsten Held. Hinweise für das Entstehen eines zweidimensionalen Elektronengases in ähnlichen Materialien gab es bereits – doch die Herstellung eines stabilen, haltbaren Elektronengases war bisher noch nie gelungen.

Bemerkenswert ist auch, dass sich die Eigenschaften diese Elektronen sehr fein einstellen lassen: Je nachdem wie intensiv man das Material bestrahlt, lässt sich die Anzahl der Elektronen variieren. Auch durch den Einbau anderer Atomsorten kann man die elektronischen Eigenschaften anpassen. „Wichtig in der Festkörperphysik ist die sogenannte Bandstruktur des Materials – der Zusammenhang zwischen der Energie und dem Impuls der Elektronen. Das erstaunliche an der untersuchten Oberfläche ist, dass sich hier die Bandstruktur von Quantenniveau zu Quantenniveau vollkommen ändert.“, erklärt Karsten Held.

Im Elektronengas des neuen Materials lässt sich eine Vielfalt verschiedener elektronischer Strukturen finden, darunter auch solche, die ganz spezielle magnetische Effekte oder Supraleitung möglich erscheinen lassen. Diese vielversprechenden Eigenschaften von Strontium-Titanoxid sollen nun in weiteren Forschungsarbeiten untersucht werden. Durch äußere elektrische Felder oder das Aufbringen zusätzlicher Metallatome an der Oberfläche könnte das neue Material, so hofft man an der TU Wien, noch weitere Geheimnisse preisgeben.

Rückfragehinweise:

Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
+43-1- 58801-13425
ulrike.diebold@tuwien.ac.at

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/elektronengas/ weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz