Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenspin-Flips unter neuem Licht

07.01.2015

Wissenschaftler im Berlin Joint EPR Lab am Helmholtz-Zentrum Berlin (HZB) und der University of Washington (UW) haben eine neue theoretische Beschreibung ausgearbeitet, die es erlaubt, Übergangswahrscheinlichkeiten zwischen Spin-Zuständen in „Elektronen Paramagnetische Resonanz“ (EPR)-Experimenten mit beliebiger Orientierung und Polarisation der anregenden Strahlung zu berechnen. Die Physiker haben den neuen Ansatz bereits mit einem Terahertz-EPR-Experiment an der Synchrotronquelle BESSY II getestet und veröffentlichen ihre Arbeit am 6. Januar 2015 im renommierten Fachjournal Physical Review Letters.

Elektronenspins sind Quantenobjekte mit faszinierenden Eigenschaften. Sie können als empfindliche Sonden genutzt werden, um die Struktur von Materialien auf atomarer Ebene zu untersuchen. Dabei verhalten sich Elektronenspins wie winzige Magnete, die in einem äußeren Magnetfeld entweder parallel oder antiparallel ausgerichtet werden.


Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II. Foto: HZB

Elektromagnetische Strahlung ist genau dann in der Lage Übergänge zwischen diesen beiden Zuständen (Spin-Flips) herbeizuführen, wenn ihre Energie genau dem Energieunterschied der beiden Orientierungen entspricht. Man bezeichnet diese Methode als „Elektronen Paramagnetische Resonanz“ (EPR), mit ihr können die Wechselwirkungsenergien der Spins untersucht und ihre Zustände manipuliert werden.

Die Wahrscheinlichkeit für einen EPR-induzierten Spin-Flip hängt davon ab, wie die magnetische Komponente der elektromagnetischen Strahlung gegenüber dem äußeren Magnetfeld orientiert ist. Hier bestand bisher eine Lücke in der theoretischen Beschreibung, da Übergangswahrscheinlichkeiten bislang nur für wenige experimentelle Anordnungen berechnet werden.

Gleichungen für jede Geometrie

Joscha Nehrkorn, Alexander Schnegg, Karsten Holldack (HZB) und Stefan Stoll (UW) ist es nun gelungen diese Beschränkung zu überwinden und Gleichungen abzuleiten, die die Übergangswahrscheinlichkeiten auch für andere experimentellen Anordnungen beschreiben. Die Gleichungen gelten für beliebige Ausrichtungen der anregenden Strahlung gegenüber dem äußeren Feld und für beliebig polarisierte Strahlung.

„Auf der Basis dieser Theorie haben wir ein allgemeinzugängliches Computerprogramm entwickelt, das es erlaubt die Ergebnisse von EPR-Experimenten zu interpretieren und sogar vorherzusagen, die bisher nur teilweise verstanden wurden“ erklärt Joscha Nehrkorn.

Test bereits gelungen

Um ihren Ansatz zu testen, haben die Autoren die Spins von dreiwertigen Eisenatomen in kleinen organischen Molekülen, so genannten Porphyrinen, in einem hohen Magnetfeld ausgerichtet und dann mit intensiver linear polarisierter THz-Strahlung aus dem Elektronenspeicherring BESSY II des HZB bestrahlt. Dabei variierten sie die Richtung der magnetischen Komponente der THz-Strahlung relativ zum äußeren Magnetfeld. Durch den Vergleich zwischen berechneten und experimentell ermittelten EPR-Signalen konnten sie die Richtigkeit des neuen theoretischen Ansatzes überprüfen.

„Das Experiment zeigt auf eindrucksvolle Weise das Potential der kohärenten Synchrotronstrahlung für THz-EPR Experimente. Diese Möglichkeiten können in Zukunft durch BESSY VSR, die nächste Ausbaustufe unserer Strahlungsquelle, sogar noch gesteigert werden“ erläutert Karsten Holldack, der den THz-Messplatz wissenschaftlich betreut.

Alexander Schnegg, der das Projekt im Rahmen des DFG Schwerpunktprogrammes SPP 1601 durchführt, erklärt: „Diese Weiterentwicklungen in der EPR-Methodik können zukünftig helfen, die Aussagekraft von EPR-Experimenten z.B. für Fragestellungen in den Lebenswissenschaften, neuen Informationstechnologien (Spintronik, Quantencomputer) oder in der Forschung an Energiematerialien deutlich zu steigern und bereiten den Weg für neuartige EPR-Experimente.“

Weitere Informationen:

Dr. Alexander Schnegg
Institut Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41373
alexander.schnegg@helmholtz-berlin.de

Dr. Joscha Nehrkorn
Institut Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41352
joscha.nehrkorn@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14114&sprache=de&ty...
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.010801

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie