Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenspin-Flips unter neuem Licht

07.01.2015

Wissenschaftler im Berlin Joint EPR Lab am Helmholtz-Zentrum Berlin (HZB) und der University of Washington (UW) haben eine neue theoretische Beschreibung ausgearbeitet, die es erlaubt, Übergangswahrscheinlichkeiten zwischen Spin-Zuständen in „Elektronen Paramagnetische Resonanz“ (EPR)-Experimenten mit beliebiger Orientierung und Polarisation der anregenden Strahlung zu berechnen. Die Physiker haben den neuen Ansatz bereits mit einem Terahertz-EPR-Experiment an der Synchrotronquelle BESSY II getestet und veröffentlichen ihre Arbeit am 6. Januar 2015 im renommierten Fachjournal Physical Review Letters.

Elektronenspins sind Quantenobjekte mit faszinierenden Eigenschaften. Sie können als empfindliche Sonden genutzt werden, um die Struktur von Materialien auf atomarer Ebene zu untersuchen. Dabei verhalten sich Elektronenspins wie winzige Magnete, die in einem äußeren Magnetfeld entweder parallel oder antiparallel ausgerichtet werden.


Karsten Holldack, Alexander Schnegg und Joscha Nehrkorn am THz-EPR Messplatz am Speicherring BESSY II. Foto: HZB

Elektromagnetische Strahlung ist genau dann in der Lage Übergänge zwischen diesen beiden Zuständen (Spin-Flips) herbeizuführen, wenn ihre Energie genau dem Energieunterschied der beiden Orientierungen entspricht. Man bezeichnet diese Methode als „Elektronen Paramagnetische Resonanz“ (EPR), mit ihr können die Wechselwirkungsenergien der Spins untersucht und ihre Zustände manipuliert werden.

Die Wahrscheinlichkeit für einen EPR-induzierten Spin-Flip hängt davon ab, wie die magnetische Komponente der elektromagnetischen Strahlung gegenüber dem äußeren Magnetfeld orientiert ist. Hier bestand bisher eine Lücke in der theoretischen Beschreibung, da Übergangswahrscheinlichkeiten bislang nur für wenige experimentelle Anordnungen berechnet werden.

Gleichungen für jede Geometrie

Joscha Nehrkorn, Alexander Schnegg, Karsten Holldack (HZB) und Stefan Stoll (UW) ist es nun gelungen diese Beschränkung zu überwinden und Gleichungen abzuleiten, die die Übergangswahrscheinlichkeiten auch für andere experimentellen Anordnungen beschreiben. Die Gleichungen gelten für beliebige Ausrichtungen der anregenden Strahlung gegenüber dem äußeren Feld und für beliebig polarisierte Strahlung.

„Auf der Basis dieser Theorie haben wir ein allgemeinzugängliches Computerprogramm entwickelt, das es erlaubt die Ergebnisse von EPR-Experimenten zu interpretieren und sogar vorherzusagen, die bisher nur teilweise verstanden wurden“ erklärt Joscha Nehrkorn.

Test bereits gelungen

Um ihren Ansatz zu testen, haben die Autoren die Spins von dreiwertigen Eisenatomen in kleinen organischen Molekülen, so genannten Porphyrinen, in einem hohen Magnetfeld ausgerichtet und dann mit intensiver linear polarisierter THz-Strahlung aus dem Elektronenspeicherring BESSY II des HZB bestrahlt. Dabei variierten sie die Richtung der magnetischen Komponente der THz-Strahlung relativ zum äußeren Magnetfeld. Durch den Vergleich zwischen berechneten und experimentell ermittelten EPR-Signalen konnten sie die Richtigkeit des neuen theoretischen Ansatzes überprüfen.

„Das Experiment zeigt auf eindrucksvolle Weise das Potential der kohärenten Synchrotronstrahlung für THz-EPR Experimente. Diese Möglichkeiten können in Zukunft durch BESSY VSR, die nächste Ausbaustufe unserer Strahlungsquelle, sogar noch gesteigert werden“ erläutert Karsten Holldack, der den THz-Messplatz wissenschaftlich betreut.

Alexander Schnegg, der das Projekt im Rahmen des DFG Schwerpunktprogrammes SPP 1601 durchführt, erklärt: „Diese Weiterentwicklungen in der EPR-Methodik können zukünftig helfen, die Aussagekraft von EPR-Experimenten z.B. für Fragestellungen in den Lebenswissenschaften, neuen Informationstechnologien (Spintronik, Quantencomputer) oder in der Forschung an Energiematerialien deutlich zu steigern und bereiten den Weg für neuartige EPR-Experimente.“

Weitere Informationen:

Dr. Alexander Schnegg
Institut Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41373
alexander.schnegg@helmholtz-berlin.de

Dr. Joscha Nehrkorn
Institut Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41352
joscha.nehrkorn@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14114&sprache=de&ty...
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.010801

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik