Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen sind verwirrt

04.11.2010
Forscher haben möglicherweise das schnellste Schmelzen aller Zeiten beobachtet

Wissenschaftler des Helmholtz-Zentrum Berlin haben bei Beryllium-Oxid (BeO) exotisches Verhalten beobachtet, wenn dieses mit schnellen Schwerionen beschossen wird: Die Elektronen des BeO scheinen nach dem Beschuss geradezu „verwirrt“ und vergessen völlig die Materialeigenschaften ihrer Umgebung.


Das K1-XV-Linienspektrum von Beryllium-Oxid ändert seine Struktur abhängig vom Projektil: Bei stark geladenen Xe31+-Ionen zeigt sich eine metallische Struktur. Grafik: HZB/Schiwietz

Die Messergebnisse zeigen Veränderungen in der Elektronenstruktur an, die durch ein extrem schnelles Schmelzen rund um die Einschussbahn der Schwerionen erklärt werden können. Wenn diese Interpretation zutrifft, wäre es das schnellste Schmelzen, das je beobachtet wurde. Die Forscher publizieren dieses Ergebnis in Physical Review Letters (DOI: 10.1103/Phys.Rev.Lett.105, 187603 (2010)).

Das Team um Prof. Dr. Gregor Schiwietz bestrahlte in seinen Experimenten einen Beryllium-Oxid-Film mit schnellen Schwerionen, deren Ladung so stark ist, dass sie eine maximale Zerschlagungskraft besitzen. Anders als in bislang üblichen Verfahren wurde die Energie der Schwerionen so gewählt, dass sie hauptsächlich mit deren äußeren Bindungselektronen in Wechselwirkung treten. Wenn Schwerionen in das Material eindringen, zeigen sich in der unmittelbaren Umgebung der eingeschossenen Ionen üblicherweise zwei Effekte: Die Elektronen in unmittelbarer Umgebung heizen sich auf und die Atome werden stark geladen. Dabei werden Auger-Elektronen emittiert, deren Energiezustände messbar sind und im sogenannten Linienspektrum dargestellt werden. Das Linienspektrum ist für jedes Material charakteristisch und wird im Normalfall bei Beschuss mit Schwerionen nur leicht verändert.

Zum weltweit ersten Mal beschossen die HZB-Forscher nun aber einen Ionenkristall (BeO), der Isolator-Eigenschaften hat, mit sehr schnellen Schwerionen (Xenon-Ionen) und konnten einen bisher unbekannten Effekt nachweisen: Das Linienspektrum der Auger-Elektronen ändert sich stark, es ist „verwaschen“ und zu höheren Energien hin gestreckt. Gemeinsam mit einem Physiker-Team aus Polen, Serbien und Brasilien haben die Wissenschaftler beobachtet, dass die Auger-Elektronen, die das aufgeheizte BeO-Material emittiert, deutlich metallische Signaturen zeigen. Die Auger-Elektronen scheinen ihre Isolator-Eigenschaften komplett „vergessen“ zu haben. Dies sehen die Wissenschaftler als klaren Beweis dafür, dass die Bandstruktur sehr schnell zusammen­bricht, wenn das BeO mit Schwerionen beschossen wird – und zwar in weniger als rund 100 Femtosekunden (eine Femtosekunde ist ein Millionstes von einem Millionsten einer Millisekunde). Auslöser für den Zusammenbruch sind die hohen Elektronentemperaturen von bis zu 100.000 Kelvin. Das Material des ansonsten kalten Festkörpers bleibt aber langfristig insgesamt intakt.

Die Ergebnisse der HZB-Wissenschaftler liefern einen starken Hinweis auf ultraschnelle Schmelzprozesse rund um die Einschussbahn der Schwerionen. Dem Schmelzen folgt ein Ausglühen, das alle dauerhaften Anzeichen des Schmelzvorgangs löscht. Prof. Schiwietz hofft, dass bei anderen ionischen Kristallen ebensolche schnellen Schmelzprozesse gefunden werden, der Prozess des Ausglühens aber unterdrückt ist. In diesem Fall wäre eine Anwendung für Programmierungen im Femtosekundenbereich vorstellbar.

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

Franziska Rott | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise