Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweiß-Nanofasern als Bausteine für innovative Materialien

27.08.2014

Materialwissenschaftler der Universität Jena starten neues DFG-Projekt

Ein kleiner Schnitt, schon blutet es. Meist ist das nicht tragisch, weil eine kleine Blutung rasch von selbst heilt. Hauptverantwortlich für die schnelle Blutstillung kleinerer Blessuren ist der Naturstoff Fibrinogen, ein Eiweißmolekül, das milliardenfach im menschlichen Blut enthalten ist. Kommt ein Fibrinogenmolekül mit Wundrändern in Berührung, verändert es sich und beginnt, sich mit anderen Fibrinogenmolekülen zu vernetzen. Dieses Netzwerk schließt die Wunde und zieht die Wundränder zusammen – der bekannte rote Schorf entsteht auf der Wunde und sie kann heilen.


Christian Helbing, hier an einem Rasterkraftmikroskop, ist Mitarbeiter im neuen Projekt, bei dem Entstehungsmechanismen der Nanofasern erforscht werden.

Foto: Jan-Peter Kasper/FSU

„Die Vernetzung des Fibrinogens bei Verletzungen des Körpers ist ein sehr komplexer Prozess, bei dem viele weitere Blutgerinnungs-Faktoren anwesend sein müssen“, erläutert Prof. Dr. Klaus D. Jandt, Lehrstuhlinhaber für Materialwissenschaft am Otto-Schott-Institut für Materialforschung (OSIM) der Friedrich-Schiller-Universität Jena, diesen Prozess.

Fasern bilden sich ohne die komplexen Faktoren des Körpers

Dass sich aus dem natürlichen Eiweißmolekül Fibrinogen auch neue Nano-Materialien auf Naturstoffbasis herstellen lassen, haben die Forscher um Prof. Jandt bereits gezeigt. „Dazu haben wir das Fibrinogen zunächst in Wasser gelöst und dann diese Lösung einer schwachen Säure oder einer verdünnten Alkohollösung ausgesetzt“, sagt Prof. Jandt. Das Ergebnis dieser Behandlung sind feine, lange Nanofasern aus Fibrinogen, deren Durchmesser nur wenige Zehntausendstel eines menschlichen Haares beträgt. „Durch unsere Methode bilden sich diese Eiweiß-Fasern ohne die vielen komplexen Faktoren, die normalerweise im Körper anwesend sind und bei Verletzungen für die Vernetzung des Fibrinogens verantwortlich sind“, beschreibt der Jenaer Materialwissenschaftler den Vorteil.

Wie sich diese Eiweiß-Nanofasern genau bilden, ist allerdings noch immer ein Rätsel. Um die Entstehungsmechanismen der Nanofasern zu verstehen, fördert die Deutsche Forschungsgemeinschaft (DFG) die Arbeiten von Jandts Gruppe. Sie stellt dafür in den kommenden zwei Jahren rd. 160.000 Euro für das neue Projekt „Neue funktionelle Materialien basierend auf selbstassemblierten Protein-Nanofasern: Erzeugung und Verständnis von Nanofasern“ zur Verfügung.

Neue Fasern aus verschiedenen Proteinen

„Wir wollen zunächst verstehen, wie die Eiweiß-Nanofasern entstehen und welche Struktur und Eigenschaften sie haben“, nennt Christian Helbing ein Forschungsziel. „Danach können wir größere, komplexere Strukturen und Systeme aus den Nanofasern erzeugen“, ergänzt der Doktorand. Dieses Prinzip wird in der Nanotechnologie als Bottom-up-Ansatz (d. h. von klein zu groß) bezeichnet. Darüber hinaus wollen die Jenaer Materialwissenschaftler neue Nanofasern erzeugen, die aus verschiedenen Proteinkombinationen bestehen.

Nanofasern haben viele potenzielle Anwendungen in Materialwissenschaft, Medizintechnik, Sensorik und Optik. So sollen Netzwerke aus den neuen Nanofasern in Zukunft als ein neues Material zur Regeneration von Knochen und Knorpel genutzt werden. Neue biophotonische Nanohybride aus den Nanofasern und Quantenpunkten, die sich als Sonden für die Mikroskopie in den Lebenswissenschaften eignen, hatte die Gruppe um Prof. Jandt bereits vor drei Jahren vorgestellt. „Durch die Protein-Nanofasern ist das Tor für eine ganz neue Generation von funktionellen Materialien für die Medizintechnik oder die Optik aufgestoßen, die auf natürlichen Stoffen und Bauprinzipien basieren“, ist sich Klaus Jandt sicher und ergänzt: „Diese biomimetischen Prinzipien werden die Werkstoffe der Zukunft entscheidend bestimmen“.

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32
07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de
http://www.cms.uni-jena.de/

Axel Burchardt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten