Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eisfreie Tragflächen durch Nanostrukturierung

25.02.2011
Wissenschaftler am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart haben nanostrukturierte Oberflächen entwickelt, auf denen Wasser abgestoßen wird und sich auch bei Minusgraden nahezu kein Eis bildet.

Sicherheit geht vor, auch im Flugverkehr. Die Auswirkungen tiefer Temperaturen in diesem Winter hat fast jeder Flugreisende zu spüren bekommen. Fällt das Thermometer unter Null Grad, müssen zugefrorene Tragflächen von Flugzeugen zuvor mit Enteisungsmittel enteist werden. Eis auf den Flügeln stört die Aerodynamik – die für den Auftrieb notwendige Strömung könnte abreißen. Auch während des Flugs wird Vorsorge getroffen. Ein Teil der heißen Triebwerksabluft wird umgelenkt und in die Tragflächen geleitet. Diese werden damit quasi beheizt, um ein erneutes Zufrieren zu verhindern. Kostspieliger und klimaschädlicher Effekt: Der Kraftstoffverbrauch des Flugzeugs kann um bis zu 30 Prozent steigen.


Thermographisches Bild eines stark unterkühlten, immer noch flüssigen Wassertropfens auf einer plasmafunktionalisierten nanostrukturierten Folie.

Forscher am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB entwickeln daher zusammen mit Partnern in dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten und vom Projektträger Karlsruhe (PTKA) betreuten Verbundprojekt »Nanodyn« eine Anti-Eis-Ausrüstung für Kunststoffoberflächen. Hierfür erzeugen sie wasserabweisende mikro- und nanostrukturierte Schichten, auf denen Wasser auch bei Temperaturen unter Null Grad flüssig bleibt und sich somit erst gar kein Eis bildet. Der Grund: Die Schichten bieten dem Wasser, das gefrieren will, keine Kristallisationskeime auf der Oberfläche und es verbleibt in einem »stark unterkühlten« (engl. supercooled) Zustand. »Und selbst wenn das Wasser gefriert, vermindert unsere Anti-Eis-Ausrüstung die Haftung von Eis um mehr als 90 Prozent«, bestätigt Dr. Michael Haupt, Projektleiter am Fraunhofer IGB, die Versuchsergebnisse in der Eiskammer bei Minus 30 Grad.

Die strukturierten Schichten scheiden die Forscher mittels Plasmatechnologien auf Kunststofffolien aus schlag- und stoßfestem Polyurethan (PU) ab. Die Folie wird hierzu in eine Vakuumkammer geführt, in der ein sogenanntes Plasma die Oberfläche modifiziert. In einem Plasma werden Gasmoleküle durch Anlegen einer hochfrequenten elektrischen Spannung angeregt und fragmentiert. »Die hochreaktiven Gasmolekülbruchstücke können nun auf der Oberfläche der Folien angekoppelt werden: es bildet sich eine Schicht«, erläutert Dr. Michael Haupt. »Durch Optimierung verschiedener Prozessparameter wie der Art und Menge des eingesetzten Plasmagases, der Temperatur, dem Druck und der Behandlungszeit können wir sehr dünne nanostrukturierte Schichten erzeugen.« Diese geordneten Strukturen sind nur wenige Nanometer groß, haben aber einen großen Einfluss auf die Benetzungseigenschaften: Wird Wasser auf die Folienoberfläche gebracht, zieht es sich zu einem kugelförmigen Tropfen zusammen, der dann aufgrund der nur minimalen Wechselwirkung mit der Oberfläche von ihr abgestoßen wird.

Und wie kommt die Folie auf die Flugzeugtragflächen? »Wir können das entwickelte Verfahren in den industriellen Maßstab übertragen. Einer unserer Projektpartner, ein Anlagenhersteller, kann ganze Folienbahnen in großen Plasmakammern Rolle-zu-Rolle beschichten«, sagt Dr. Michael Haupt. Und die nanostrukturierte Folie könnte dann einfach auf die Tragflächen geklebt werden. Die teure Enteisung von Flugzeugen, große Mengen an Enteisungsmitteln, vor allem aber Flugbenzin könnten eingespart und damit erhebliche Mengen CO2-Emissionen vermieden werden.

Die Einsatzgebiete sind vielfältig: Auch auf Windrädern, die aufgrund von Vereisung im Winter stehen bleiben oder unwuchtig laufen, auf Solarpaneelen, Freileitungen und Gebäudeteilen würden nanostrukturierte Oberflächen gute Dienste leisten. Darüber hinaus würde eine Anti-Eis-Ausrüstung einen erheblichen Beitrag zur Sicherheit leisten.

Ihre Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für
Grenzflächen- und Bioverfahrenstechnik IGB
Nobelstraße 12
70569 Stuttgart
Dr. Michael Haupt
Telefon: +49 (0) 7 11 / 9 70-4028
Fax: +49 (0) 7 11 / 9 70-4200

Dr. Claudia Vorbeck | Fraunhofer-Institut
Weitere Informationen:
http://www.nanodyn.de
http://www.igb.fraunhofer.de/www/presse/jahr/2011/dt/2011-02-25-Nanodyn-eisfrei.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

26.09.2017 | Biowissenschaften Chemie

eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung

26.09.2017 | Biowissenschaften Chemie

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017 | Physik Astronomie