Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Haut lässt die Muskeln spielen

01.07.2014

Eine Membran rollt sich schnell und kräftig zusammen, wenn sie mit einem Lösungsmittel in Berührung kommt

Ungeahnte Kräfte entwickelt eine künstliche Haut, die ein Team um Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam jetzt präsentiert. Die Forscher haben eine Membran hergestellt, die sich sehr schnell aufrollt, wenn sie in Kontakt mit den Dämpfen organischer Lösungsmittel wie etwa Aceton kommt.

Mit der Folie – Fachleute sprechen von einem Aktuator –  ahmen sie biologische Strukturen nach, die sich wie die Venusfliegenfalle oder die Deckel der Samenkapseln von Mittagsblumen bei einem Reiz von außen bewegen. Dabei kommt ihr Aktuator den biologischen Vorbildern besonders nah, weil die Forscher darin erstmals zwei Designprinzipien anwendeten, die Materialwissenschaftler bisher nicht für solche Systeme nutzten:

Zum einen konzipierten sie die Membran so, dass deren Oberseite hart ist, das Material darunter aber allmählich weicher wird. Zum anderen wird die Folie von Poren durchzogen, die dem Lösungsmittel einen raschen Zugang in die Membran gewähren. Daher reagiert diese auf den äußeren Reiz schneller als andere Aktuatoren. Solche Materialien könnten als künstliche Haut und Muskeln etwa für Roboter dienen, eignen sich aber auch als Sensoren.


Ein Bewegungstalent: Dank der Poren und ihrer chemischen Struktur rollt sich die Membran, die Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung entwickelt haben, schneller und kräftiger auf als vergleichbare Aktuatoren.

© MPI für Kolloid- und Grenzflächenforschung

Pflanzen kennen keine Muskeln, viele sind trotzdem ziemlich rührig. So öffnen sich die Samenkapseln der Mittagsblume, wenn sie nass werden, wenn die Bedingungen also günstig sind, damit die Samen gedeihen können. Sobald die Kapseln trocken fallen, schließen sich die Deckel wieder. Die Aussicht auf eine erfolgreiche Fortpflanzung, verdankt die Mittagsblume der ausgeklügelten Struktur der Kapseldeckel:

Da deren Unterseite anders als die Oberseite Wasser aufnehmen kann und dabei aufquillt, klappen die feuchten Deckel auf, während sie sich im trockenen Zustand wieder zusammenfalten. Ganz ähnlich funktioniert der biomimetische Aktuator, den ein Team um Jiayin Yuan, Leiter einer Forschungsgruppe am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, entwickelt hat.

„Unsere Membran reagiert auf einen äußeren Reiz gut zehnmal schneller als bisherige Polymer-Aktuatoren“, sagt Jiayin Yuan. „Sie führt zudem eine größere Bewegung aus.“ Dabei übt die Membran eine Kraft aus, mit der sie etwa da zwanzigfache ihres eigenen Gewichts anheben kann. Und sie funktioniert sogar dann noch fast tadellos, wenn ihr die Forscher ziemlich zusetzen:

Erst kühlen sie das Material mit flüssigem Stickstoff zwei Stunden lang auf minus 190 Grad Celsius, erhitzen es anschließend einen ganzen Tag lang auf plus 150 Grad Celsius und pressen es dann noch mit einer Tonne pro Quadratzentimeter. Zwar büßt die Membran bei dieser Tortur ein wenig an Reaktionsgeschwindigkeit ein, funktioniert aber immer noch besser als alle vergleichbaren Polymer-Aktuatoren, die sich beim Kontakt mit einer Flüssigkeit bewegen.

Ein Gefälle im Grad der Vernetzung und Poren machen den Unterschied

Materialwissenschaftler verfolgten bereits verschiedene Ansätze, um biomimetische Aktuatoren zu entwickeln, die sich also wie biologische Vorbilder verhalten. Bisher kamen sie dabei jedoch nicht an das natürliche Vorbild heran. Wie bei den mechanischen Teilen von Pflanzen macht auch hier die Struktur des Materials den Unterschied. „Unsere Membran weist einen Gradienten, also eine Gefälle, im Grad der Vernetzung auf, und ist außerdem porös“, sagt Jiayin Yuan.

„Dank dieser beiden Strukturmerkmale, reagiert unser Aktuator schnell und mit einer großen Bewegung.“ Bisher bestehen viele solcher Aktuatoren dagegen aus zwei Schichten, die unterschiedlich viel Flüssigkeit aufnehmen. Solch eine Materialkombination kann aber nur relativ kleine Bewegungen ausführen, und ist dabei auch noch langsam.  Viele dieser Systeme lassen sich zudem nur aufwändig herstellen, einige gehen zudem kaputt, wenn sie zu heiß oder trocken werden. 

Ihren besonders leistungsfähigen Membran-Aktuator erhalten die Forscher, indem sie zunächst in einer entsprechenden Lösung eine Membran aus einem ionischen Polymer erzeugen. In diese Folie eingelagert sind voluminöse Säulen-Moleküle, die mögliche Anknüpfungspunkte zu den ionischen Polymeren tragen. Die molekularen Säulen und Ketten vernetzen die Forscher nun mit einer Ammoniaklösung, die die Anknüpfungspunkte der Säulen aktiviert.

Der Clou dabei: Die Forscher gewähren der Ammoniaklösung nur von einer Seite Zugang zu der Membran, weil diese auf einer Glasunterlage liegt. Die Lösung sickert also nur langsam von oben in die Folie ein. Daher verknüpft sie die Komponenten an der Oberseite stark, aber immer weniger, je tiefer es in die Membran hineingeht. Die wässrige Ammoniaklösung hat aber noch einen anderen Effekt, sie hinterlässt auch die Poren in der Folie.

Durch die Poren breitet sich der Dampf des Lösungsmittels wie etwa des Acetons schlagartig in der Membran aus. An der Oberseite, die stark vernetzt und hart ist, richtet es allerdings nicht viel aus. In Richtung der Unterseite dagegen immer mehr: Dort löst es das ionische Polymer und lässt das Material aufquellen – die Membran biegt sich.

Die Membran kann zwischen verschiedenen Lösungsmitteln unterscheiden

Solche Aktuatoren könnten überall dort nützlich sein, wo ein Material mit einer Bewegung auf einen äußeren Reiz reagieren soll. So könnte eine Membran wie diejenige des Teams um Jiayin Yuan, an dem auch Forscher des Helmholtz-Zentrums Berlin beteiligt waren, Robotern gleichzeitig als künstliche Haut und Muskel dienen. Ihr besonderer Charme läge darin, dass für die Bewegung müsste keine Energie extra aufgewendet werden müsste. Die würde vielmehr der Reiz selbst liefern.

Eine weiteres ziemlich unerwartetes Einsatzgebiet der Membran kam den Forschern in den Sinn, während sie verschiedene Lösungsmittel als Motor des Aktuators testeten: „Die Membran reagiert sehr charakteristisch auf jedes Lösungsmittel, das wir verwendeten – sowohl in der Stärke der Bewegung als auch in der Reaktionszeit“, erklärt Jiayin Yuan. „Sie eignet sich also sehr gut als Sensor, der zwischen verschiedenen organischen Lösungsmitteln unterscheiden kann.“

Die Forscher des Potsdamer Max-Planck-Instituts wollen ihr Material nun weiterentwickeln. Sie arbeiten etwa an einem Aktuator, der nicht durch ein Lösungsmittels motiviert wird, sondern durch Licht. Und auch darin sieht Jiayin Yuan nur eine der Chancen, die sein Forschungsgegenstand bietet: „Wir wollen zeigen, dass polyionische Flüssigkeiten Anwendungen ermöglichen, die mit anderen Materialien nicht denkbar sind.“

Ansprechpartner 

Dr. Jiayin Yuan

Telefon: +49 331 567-9552

 

Katja Schulze

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm

Telefon: +49 331 567-9203
Fax: +49 331 567-9202

 

Originalpublikation

 
Qiang Zhao, John W.C. Dunlop, Xunlin Qiu, Feihe Huang, Zibin Zhang, Jan Heyda, Joachim Dzubiella, Markus Antonietti und Jiayin Yuan
An instant multi-responsive porous polymer actuator driven by solvent molecule sorption
Nature Communications, 1. Juli 2014; DOI: 10.1038/ncomms5293

Dr. Jiayin Yuan | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8284926/membran_aktuator

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System

08.12.2016 | Physik Astronomie

Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten

08.12.2016 | Energie und Elektrotechnik

Oberleitungs-LKW: Option für einen umweltverträglichen Güterverkehr?

08.12.2016 | Verkehr Logistik