Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Wimpernschlag vom Isolator zum Metall

17.04.2018

Dank der geschickten Kombination neuartiger Technologien lassen sich vielversprechende Materialien für die Elektronik von morgen untersuchen.

Mit Hilfe kurzer Laserpulse ist es einem Forscherteam um Misha Ivanov vom Max-Born-Institut in Berlin gemeinsam mit Wissenschaftlern des Russian Quantum Center bei Moskau gelungen, Licht auf die extrem schnellen Prozesse in neuartigen Materialien zu werfen. Die Ergebnisse sind im renommierten Fachblatt „Nature Photonics” erschienen.


Hohe harmonische Spektroskopie des lichtinduzierten Phasenübergangs. Die vertikale rote Linie zeigt, wo das elektrische Feld des Lasers (gelbe oszillierende Kurve) das Schwellenfeld überquert und dabei die isolierende Phase des Materials zerstört. Die obere Grafik zeigt die durchschnittliche Anzahl an Doublonen-Loch-Paaren pro Platz (blau) und den Zerfall des isolierenden, feldfreien Grundzustands (rot). MBI Berlin

In den letzten Jahrzehnten sind Computer immer schneller geworden und zugleich haben Festplatten und Speicherchips riesige Kapazitäten erreicht. Die Entwicklung kann aber nicht immer so weiter gehen: Schon heute zeichnen sich physikalische Grenzen ab, die eine weitere drastische Beschleunigung der auf Silizium basierenden Computertechnik unmöglich machen.

Bei der Suche nach neuartigen Materialien und Technologien für die Informationsverarbeitung versprechen sich Forscher insbesondere von der Kombination elektrischer und optischer Schaltkreise ganz neue Impulse. Mit Hilfe kurzer Laserpulse ist es nun einem Forscherteam um Misha Ivanov vom Max-Born-Institut in Berlin gemeinsam mit Wissenschaftlern des Russian Quantum Center bei Moskau gelungen, Licht auf die extrem schnellen Prozesse in solchen neuartigen Materialien zu werfen. Die Ergebnisse sind im renommierten Fachblatt „Nature Photonics” erschienen.

Von besonderem Interesse für die moderne Materialforschung in der Festkörperphysik sind sogenannte „stark korrelierte Systeme”, bei denen sich die Elektronen im Material gegenseitig beeinflussen. Ein Beispiel hierfür sind Magnete: Hier richten sich die Elektronen im Material in einer bevorzugten Drehrichtung aus und erzeugen dadurch ein Magnetfeld. Es sind aber auch ganz andere Ordnungsstrukturen denkbar.

Bei sogenannten Mott-Isolatoren, die derzeit intensiv erforscht werden, sollten die Elektronen eigentlich frei fließen können und das Material elektrisch leitend sein wie ein Metall. Aufgrund der gegenseitigen Wechselwirkungen in diesem stark korrelierten Material behindern sie sich aber gegenseitig und das Material wird zum Isolator.

Wenn man diese Ordnung durch einen starken Laserpuls stört, ändern sich auch die physikalischen Eigenschaften dramatisch. Man kennt dies vom Übergang von fest zu flüssig: Wenn Eis schmilzt, verwandelt sich der starre Eiskristall in frei bewegliche Wassermoleküle. Ganz ähnlich gewinnen auch die Elektronen in stark korrelierten Materialien Beweglichkeit, wenn ihre Ordnung durch externe Laserpulse einen Phasenübergang erfährt.

Deshalb eröffnen solche Phasenübergänge die Möglichkeit, ganz neue Schaltelemente für die moderne Elektronik zu entwickeln, die schneller und vermutlich energieeffizienter als heutige Transistoren sind. Im Prinzip könnten Computer dank der Kombination von elektrischen Komponenten mit Lichtpulsen rund 1000-fach schneller werden.

Das Problem bei der Analyse solcher Phasenübergänge: Sie finden extrem schnell statt und lassen sich deshalb nur schwer untersuchen. Bislang konnten Wissenschaftler nur den Zustand des Materials vor und nach einem solchen Phasenübergang bestimmen.

Die Forscher Rui E.F. Silva, Olga Smirnova und Misha Ivanov vom Max-Born-Institut haben nun aber eine Methode ersonnen, im wahrsten Sinne des Wortes Licht auf diese Prozesse zu werfen: Laut ihrer Theorie kann man diese Materialien mit extrem kurzen, maßgeschneiderten Laserpulsen bestrahlen, die in dieser Qualität erst jetzt verfügbar sind. Damit lässt sich als Reaktion des Materials auf diese Pulse beobachten, wie die Elektronen im Material zu Bewegungen angeregt werden und dabei wie eine Glocke Oberschwingungen mit bestimmten Frequenzen aussenden, als Harmonische des einfallenden Lichts.

„Wenn wir dieses hohe harmonische Spektrum analysieren, können wir erstmals die Änderung der Ordnungsstruktur in diesen stark korrelierten Materialien ‚live‘ beobachten”, sagt Erstautor Rui Silva. Erst seit Kurzem gibt es Laserquellen, die überhaupt in der Lage sind, diese Übergänge gezielt auszulösen. Dazu müssen die Laserpulse einerseits stark genug sein – und andererseits extrem kurz und im Femtosekundenbereich liegen (millionstel milliardstel Sekunden).

Teilweise reicht eine einzige Lichtschwingung, um die Ordnung der Elektronen im Material durcheinanderzuwirbeln und aus einem Isolator einen metallartigen Leiter zu machen. Die Wissenschaftler am Max-Born-Institut gehören auf diesem Gebiet ultrakurzer Laserpulse zu den führenden Experten weltweit.

„Wenn wir die Eigenschaften der Elektronen im Material mit Licht kontrollieren wollen, müssen wir genau verstehen, wie die Elektronen auf Lichtpulse reagieren”, erklärt Ivanov. Dank der neuartigen Laserquellen, bei denen sich sogar einzelne Schwingungen des elektromagnetischen Feldes vollständig kontrollieren lassen, sind mit der nun publizierten Methode tiefe Einsichten in die Materialien der Zukunft möglich.

Bildunterschrift (ausführlich):
Hohe harmonische Spektroskopie des lichtinduzierten Phasenübergangs. Die vertikale rote Linie zeigt, wo das elektrische Feld des Lasers (gelbe oszillierende Kurve) das Schwellenfeld überquert und dabei die isolierende Phase des Materials zerstört. Die obere Grafik zeigt die durchschnittliche Anzahl an Doublonen-Loch-Paaren pro Platz (blau) und den Zerfall des isolierenden, feldfreien Grundzustands (rot).

Originalveröffentlichung:
“High harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems“
R. E. F. Silva, Igor V. Blinov, Alexey N. Rubtsov, O. Smirnova & M. Ivanov
Nature Photonics, 26 March 2018 (online), DOI: 10.1038/s41566-018-0129-0
www.nature.com/articles/s41566-018-0129-0

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Prof. Dr. Misha Ivanov
Tel. 030 / 6392 1210
E-Mail mivanov@mbi-berlin.de

Prof. Dr. Olga Smirnova
Tel. 030 / 6392 1340
E-Mail olga.smirnova@mbi-berlin.de

Weitere Informationen:

http://www.nature.com/articles/s41566-018-0129-0
http://www.mbi-berlin.de

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics