Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuartiger Mikrochip mit hohem Anwendungspotenzial

14.08.2014

Wie kann man einen Flüssigkeitsstrahl erzeugen, der um ein Vielfaches dünner ist als ein menschliches Haar? Wie ist es möglich, den winzigen Durchmesser und die Dynamik dieses Strahls zu kontrollieren und exakt vorherzubestimmen?

Ein neuartiger Kunststoff-Mikrochip bietet flexible Lösungen für dieses Problem. Dr. Martin Trebbin an der Universität Bayreuth hat ihn – in Kooperation mit einem internationalen Forschungsteam – konzipiert, im Labor gefertigt und erfolgreich erprobt. Die neue Entwicklung ist von hoher technologischer Relevanz, beispielsweise für die Mikrobioanalytik, die medizinische Wirkstoff-Forschung oder die Mikrofaserproduktion.


Dr. Martin Trebbin, Universität Bayreuth. Aufgrund seiner erfolgreichen Forschungsarbeiten hat er kürzlich einen Ruf auf eine W1-Juniorprofessur an der Universität Hamburg erhalten.

Foto: Christian Wißler; zur Veröffentlichung frei.


Li.: Der Mikrochip mit Mikrokanälen und Düsen; Mitte: Struktur einer einzelnen Düse; re.: Austritt eines extrem dünnen Strahls aus der Düse. 1 Mikrometer = 1 Tausendstel Millimeter.

Bilder: Dr. Martin Trebbin, Universität Bayreuth; nur mit Autornachweis zur Veröffentlichung frei.

Feinste Transportbahnen auf engstem Raum

Der durchsichtige Kunststoff-Mikrochip ist nicht viel größer als eine 1-Cent-Münze. Er besitzt ein sehr feines System von Mikrokanälen sowie eine Düse, aus der ein extrem dünner Flüssigkeitsstrahl austreten kann. Dieser ‚Flüssigkeits-Jet‘ hat je nach Konstruktion des Chips einen Durchmesser von wenigen Mikrometern.

Der von Dr. Trebbin gefertigte Chip erzeugt einen Strahl, der – unter dem Elektronenmikroskop gemessen – nur 2,46 Mikrometer dünn ist, während ein menschliches Haar rund 20 mal so dick ist. Oder anders gesagt: Würde man eine 1-Euro-Münze in 1000 übereinander liegende Scheiben zerschneiden, wäre der Strahl ungefähr so dünn wie eine dieser Scheiben.

Die Flüssigkeitsmengen, die der Strahl transportiert, sind entsprechend gering. Sie liegen je nach Verwendung des Chips bei 150 bis 1000 Mikrolitern pro Stunde. Mit einer 1-Liter-Wasserflasche ließe sich ein Flüssigkeitsstrahl bei einer Flussrate von 500 Mikrolitern pro Stunde rund 12 Wochen lang durchgängig betreiben.

Kristallographische Analysen bisher unzugänglicher Proteine –
neue Chancen für die Strukturbiologie und die Wirkstoff-Forschung

Seit die räumliche Struktur des menschlichen Erbguts bereits in den 1950er Jahren mithilfe der Röntgenkristallographie aufgeklärt werden konnte, wird dieses Verfahren eingesetzt, um Biomoleküle zu analysieren, die beispielsweise für den Stoffwechsel oder für Alterungsprozesse eine zentrale Rolle spielen.

Weil aber die Röntgenkristallographie in der Regel zu schwache Bilder von einzelnen Proteinen liefert, war man zunächst dazu übergegangen, ausgehend von einzelnen Biomolekülen große Kristallstrukturen herzustellen. Diese Kristalle ermöglichen deutlich präzisere Einblicke in die Strukturen der Einzelmoleküle. Ihre Züchtung im Labor ist allerdings sehr zeitaufwändig, und es gibt zahlreiche Proteine, die keine Kristalle in ausreichender Größe bilden oder nur in zu geringen Mengen verfügbar sind.

In den letzten Jahren konnte die Röntgenkristallographie jedoch so weiterentwickelt werden, dass bereits kleine Mengen winziger Kristalle im Nanometerbereich ausreichen, um detaillierte Informationen über die Strukturen einzelner Proteine zu gewinnen.

Derart kleine Kristalle lassen sich wesentlich einfacher herstellen, so dass jetzt eine Vielzahl zuvor unzugänglicher Proteine untersucht werden können. Bei diesen neuartigen Analysen kommen so genannte Röntgen-Freie-Elektronen-Laser – X-ray free electron laser, kurz: XFEL – zum Einsatz. Diese noch junge Technologie ist umso erfolgreicher, je effizienter es gelingt, viele solcher Nano-Proteinkristalle nacheinander den ultrakurzen Röntgenblitzen auszusetzen.

An genau diesem Punkt eröffnet der von Dr. Martin Trebbin entwickelte Mikrochip wertvolle Möglichkeiten. Die zu untersuchenden Proteine werden in spezielle Lösungen gegeben, in denen sich dann nanometergroße Proteinkristalle bilden. Im nächsten Schritt wird daraus mithilfe des Mikrochips ein Flüssigkeitsstrahl erzeugt, der außerordentlich effizient ist. Denn er ist so dünn, dass einzelne Nanokristalle nacheinander aus dem Chip austreten und nun von den blitzartigen Röntgenpulsen des Freie-Elektronen-Lasers getroffen werden können. Die dabei entstehenden seriellen Aufnahmen bieten zusammen ein präzises Bild von der dreidimensionalen Struktur des jeweiligen Proteins.

„Die Forschungsidee, die XFEL-Technologie mit einem solchen dünnen Flüssigkeitsstrahl zu kombinieren, ist erst vor wenigen Jahren geboren worden“, erklärt Dr. Trebbin. „Der Mikrochip, den wir hier in Bayreuth entwickelt haben, hat nun das Potenzial, die systematische Umsetzung der Idee der seriellen Femtosekunden-Nanokristallografie erheblich voranzubringen. Denn die Strukturen wichtiger Biomoleküle, welche zuvor nur schwer oder nicht zugänglich waren, lassen sich jetzt röntgenkristallographisch mit hoher Präzision untersuchen. Nicht allein die strukturbiologische Grundlagenforschung, sondern auch die Entwicklung neuer medizinischer Wirkstoffe können von den so gewonnenen Erkenntnissen profitieren.“

Kooperationen mit Großforschungseinrichtungen

In den nächsten Jahren will Dr. Trebbin mit dem Deutschen Elektronen-Synchrotron (DESY) in Hamburg noch enger als bisher zusammenarbeiten. Hier entsteht derzeit das „European XFEL“, ein weiträumiges und in Europa einzigartiges Forschungszentrum, das die XFEL-Technologie systematisch weiterentwickeln und anwenden wird. Auch die Kooperation mit dem LCLS-SLAC National Accelerator Laboratory in Stanford/USA, das aktuell das weltweit führende XFEL-Zentrum ist, soll in Zukunft noch weiter ausgebaut werden.

Mögliche Anwendungen in der Mikrofaserproduktion
und der Verarbeitung pharmazeutischer Wirkstoffe

Über die Röntgenkristallographie hinaus zeichnen sich weitere Einsatzmöglichkeiten des neuen Mikrochips ab. Denn auch extrem dünne Fasern lassen sich damit erzeugen. Solche Fasern sind der Rohstoff für sehr dichte Gewebestrukturen, die eine außerordentliche Elastizität und Reißfestigkeit besitzen können und daher nicht nur für die Textilindustrie, sondern beispielsweise auch für die Medizintechnik hochinteressant sind. Ein prominentes Beispiel sind Fasern aus rekombinanter Spinnenseide, die an der Universität Bayreuth von Prof. Dr. Thomas Scheibel entwickelt wurden.

Nicht zuletzt erlaubt der Mikrochip die Bildung winziger Mikrotropfen oder feiner Nanosprays. Auf diese Weise kann er bei der Verarbeitung pharmazeutischer Wirkstoffe, beispielsweise bei der Sprühtrocknung, eingesetzt werden. So lässt sich die Lagerbeständigkeit von Medikamenten verbessern oder deren Freisetzung im Körper beeinflussen.

Der Luftdruck macht’s –
ein weites Feld für innovative Kombinationen

Der neue Mikrochip besteht aus dem Kunststoff PDMS (Polydimethylsiloxan) und wurde mithilfe etablierter weichlithographischer Verfahren gefertigt. Seine hervorragende Leistungsfähigkeit beruht darauf, dass er nach dem Prinzip der gas-dynamischen virtuellen Düse (GDVN) konstruiert ist. Dabei wirkt Luft oder ein anderes Gasgemisch in einer exakt definierten Weise auf die Flüssigkeit ein und führt dazu, dass der Durchmesser des aus der Düse austretenden Strahls erheblich kleiner ist als der Durchmesser der Düse. Die dynamischen Eigenschaften des Strahls hängen davon ab, wie der Chip im Inneren aufgebaut ist.

„Hier eröffnet sich ein weites Feld für Konstruktionen, aus denen interessante, heute noch gar nicht absehbare technische Anwendungen hervorgehen können“, meint Dr. Trebbin. Er denkt dabei auch an die Möglichkeit, eine größere Anzahl von Düsen herstellen und kombinieren zu können – sei es, dass sie nebeneinander oder hintereinander geschaltet werden.

Im Rückblick auf die bisher geleisteten Forschungsarbeiten verweist der Bayreuther Nachwuchswissenschaftler auf die enge Kooperation in den Laboratorien des von Prof. Dr. Stephan Förster geleiteten Lehrstuhls Physikalische Chemie I. „Die Forschungen am Mikrochip waren ein wesentlicher Beitrag zu meiner Dissertation. Ohne die technische und organisatorische Unterstützung, die ich dabei von den hiesigen Mitarbeiterinnen und Mitarbeitern erhalten habe, wäre dieses Projekt längst nicht so erfolgreich verlaufen.“ Vor kurzem hat Dr. Martin Trebbin einen Ruf auf eine W1-Juniorprofessur an der Universität Hamburg erhalten.

Die Forschungsarbeiten waren Teil des von Prof. Förster koordinierten Projekts STREAM, das durch einen ERC Advanced Grant gefördert wird, und wurden zudem vom Bundesministerium für Bildung und Forschung (BMBF) unterstützt.

Veröffentlichung:

Martin Trebbin, Kilian Krüger, Daniel DePonte, Stephan V. Roth,
Henry N. Chapman and Stephan Förster,
Microfluidic liquid jet system with compatibility for atmospheric
and high-vacuum conditions,
in: Lab Chip, 2014, 14, 1733 // DOI: 10.1039/c3lc51363g

Kontakt:

Dr. Martin Trebbin
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55 4378
E-Mail: martin.trebbin@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie