Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein großer Sprung in eine neue Zeit: Millionenförderung für realistische Werkstoffsimulation

11.05.2015

Europäischer Forschungsrat fördert Max-Planck-Projekt mit 1,5 Millionen Euro

Der Europäische Forschungsrat fördert Dr. Blazej Grabowski, Wissenschaftler am Max-Planck-Institut für Eisenforschung (MPIE), mit 1,5 Millionen Euro für einen Zeitraum von fünf Jahren für sein Projekt „TIME-BRIDGE“ (übersetzt: Zeitbrücke). Grabowski leitet zusammen mit seinem MPIE-Kollegen Dr. Cem Tasan die Gruppe „Adaptive Strukturwerkstoffe“.


Simulation eines Nanopillars, also eines nanoskopisch atomaren Turms. In der Simulation wurde der Nanopillar zusammengedrückt, wodurch die Oberfläche mit Defekten bedeckt wurde.

Jongbae Jeon, Max-Planck-Institut für Eisenforschung GmbH


Analoges Experiment. Bisher können die theoretischen und experimentellen Ergebnisse noch nicht vollständig miteinander vereint werden. Dies soll durch TIME-BRIDGE behoben werden.

Christoph Kirchlechner, Max-Planck-Institut für Eisenforschung GmbH

Bei dem jetzt bewilligten Forschungsprojekt geht es um die Entwicklung neuartiger Simulationsmethoden, die es in Zukunft erlauben, Materialeigenschaften, wie zum Beispiel die Festigkeit, kontrolliert zu optimieren.

Grabowski plant mit einer neuen theoretischen Herangehensweise Fortschritte auf diesem Gebiet zu erzielen, indem er ein grundsätzliches Verständnis der zeitlichen Abläufe auf der Nano- bis hin zur Makroskala innerhalb des Materials schafft. Unterstützt wird er hierbei von einem experimentellen Expertenteam um Dr. Christoph Kirchlechner, Leiter der Gruppe „Nano-/Mikromechanik von Materialien“ am MPIE.

Die Eigenschaften von Materialien hängen von ihrer atomaren Struktur und deren Dynamik ab. Dabei weisen die meisten Werkstoffe Defekte auf, die beides kritisch beeinflussen. So ging man lange Zeit davon aus, dass die theoretische Festigkeit eines Materials nicht erreicht werden kann, da diese erst bei perfekten Strukturen, existiert.

Experimente haben aber gezeigt, dass diese Annahme falsch ist - auf der Nanometerebene kann man zuvor unerreichte Festigkeiten, welche bis an die theoretische Grenze herangehen, nachweisen. Diese aus wissenschaftlicher Sicht höchst spannenden Ergebnisse sind allerdings noch nicht ausreichend verstanden, um sie industriell umsetzbar zu machen. Weitere Fortschritte sind nur durch den Einsatz von komplementären Simulationsmethoden möglich, die ihrerseits aber bisher unter dem sogenannten Zeitskalendilemma litten.

Mit speziellen Methoden simulieren die Materialwissenschaftler mehrere Millionen Atome, um die Wechselwirkungen der Defekte und somit die Einflussfaktoren auf bestimmte Eigenschaften eines Materials wie die Festigkeit, zu verstehen.

Hierbei stoßen sie auf das Zeitskalendilemma: die Atome in einem Material sitzen nicht auf festen Positionen, sondern vibrieren mit extremen Geschwindigkeiten um ihre Plätze. Mit gegenwärtigen Computersimulationen können die Wissenschaftler daher nur wenige Nanosekunden dieser Dynamik beschreiben. Das ist problematisch, weil die Dynamik der Defekte, wie sie experimentell gemessen wird und wie sie für die Festigkeit des Materials verantwortlich ist, sich im Bereich von Sekunden abspielt.

Dieses Intervall zwischen Nanosekunden und Sekunden konnte bisher nicht zufriedenstellend überbrückt werden.

Grabowskis Projekt „TIME-BRIDGE“ will genau dieses fehlende und wichtige Zeitintervall mit einer neuen Methode in der Simulation von Atomen beschreiben: der Pseudopotential-Methode. Diese Methode wird normalerweise zur Bestimmung der Dynamik von Elektronen, das heißt deren Bewegung, benutzt. Hintergrund ist, dass Elektronen, also negativ geladene Elementarteilchen, die Nähe des Atomkerns bevorzugen, um welchen sie kreisen.

Gleichzeitig stoßen sich die Elektronen gegenseitig ab, sodass sie den größtmöglichen Abstand voneinander haben. Hierbei bewegen sich die Elektronen nicht überall gleich schnell: in der Nähe des atomaren Kerns bewegen sie sich schneller als in dem Bereich zwischen den Atomkernen. Computersimulationen sind dabei durch die schnellste Bewegung im System limitiert.

Bei der Elektronendynamik wird dieses Problem durch ein sogenanntes Pseudopotential gelöst, welches die Attraktivität des Kerns und gleichzeitig das gegenseitige Abstoßen der Elektronen voneinander erfolgreich imitiert. Grabowski will nun dieses Konzept bei der Simulation von Atomen anwenden, um das Intervall zwischen den theoretisch beschreibbaren Nanosekunden und den experimentell relevanten Sekunden zu überbrücken und damit die Grundlage für die Entwicklung neuartiger Materialien zu schaffen.

Im Fokus werden zunächst sogenannte Nanopillar-Untersuchungen stehen. Hierbei erzeugen die Wissenschaftler kleine atomare „Türme“, die später zusammengestaucht werden. Diese idealisierten Studien erlauben es die Wechselwirkung der Defekte untereinander mit hoher Präzision und systematisch zu bestimmen.

Die theoretischen Untersuchungen von Grabowski werden von hochgenauen Experimenten mit modernsten Elektronenmikroskopen unter der Leitung von Kirchlechner begleitet. Die enge Zusammenarbeit der Theoretiker und Experimentatoren ist ein wesentliches Merkmal von TIME-BRIDGE, dass die Erfolgschancen des Projektes immens steigert.

Die Förderung des Europäischen Forschungsrates gibt jungen Wissenschaftler die Möglichkeit ihre eigene Forschungsgruppe aufzubauen, um somit Talente frühzeitig zu fördern. Als angehende Führungskräfte sollen die geförderten Wissenschaftler europaweit unabhängige Forschung betreiben.

Weitere Informationen:

http://www.mpie.de

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE