Ein Blech, das niemals scheppert

Modell des phononischen Kristalls auf dem Cover von "Advanced Materials" Empa

Noch funktioniert das «programmierbare Material» nur in einer eindimensionalen Modellkonstruktion, doch die hat ihre ungewöhnlichen Fähigkeiten bereits bewiesen: Soeben wurde die Forschungsarbeit mit dem Titel «Phononic Crystal with Adaptive Connectivity» in der Fachzeitschrift «Advanced Materials» publiziert (www.advmat.de). Ein erster Schritt zu mechanischen Bauteilen mit frei programmierbaren Eigenschaften ist damit gelungen.

Das Arbeitsmodell, das die Forscher nutzen, besteht aus einer ein Meter langen und ein Zentimeter breiten Aluminiumplatte von einem Millimeter Dicke. Dieser Blechstreifen kann in verschiedenen Frequenzen schwingen.

Um die Wellenausbreitung zu kontrollieren, sind zehn kleine Alu-Zylinder (7 mm dick, 1 cm hoch) auf dem Metall befestigt – zwischen Blech und Zylindern sitzen jeweils Piezo-Scheiben, die elektronisch angeregt werden können und dann blitzschnell ihre Dicke verändern. Dadurch kann das Forscherteam um Projektleiter Andrea Bergamini letztlich genau kontrollieren, ob und wie sich Wellen im Blechstreifen ausbreiten dürfen. Aus dem Aluminiumstreifen ist dadurch ein so genannter adaptiver phononischer Kristall geworden – ein in seinen Eigenschaften verstellbarer Werkstoff.

Anpassung in Bruchteilen einer Sekunde

Die Piezo-Steuerung kann nun so eingestellt werden, dass sich Wellen im Blechstreifen «ganz normal» ausbreiten zu können, also ganz so als ob keine Aluminiumzylinder darauf befestigt wären. Eine andere Konfiguration ermöglicht es, ein gewisses Frequenzspektrum der Wellen zu tilgen. Und diese Dämpfung ist variierbar– denn die Piezo-Elemente können elektronisch in Bruchteilen von Sekunden ihre mechanoelastischen Eigenschaften ändern – von weich federnd bis zu völlig steif.

Bergamini erläutert, was einst aus den Forschungsergebnissen entstehen könnte: «Stellen Sie sich vor, Sie stellen ein Blech her, bedruckt mit einer elektronischen Schaltung und kleinen Piezo-Elementen in regelmässigem Abstand. Dieses Blech könnte man dann elektronisch auf eine bestimmte Schwingungsfrequenz programmieren. Das interessante dabei: Selbst wenn man einen Teil des Blechs abschneidet, würden sich die Wellen im abgeschnittenen Teilstück weitgehend gleich ausbreiten wie im Ausgangsstück.» Das kleine Blech hätte die selben Schwingungseigenschaften wie ein grosses. Diese Methode liesse sich auch auf dreidimensionale Bauteile anwenden.

Ein solches «Metamaterial» könnte den Maschinen- und Anlagenbau tiefgreifend revolutionieren. Bisher galt es, die gewünschten Schwingungseigenschaften bereits bei der Auswahl des Materials festzulegen. In Zukunft könnte das Material auf aktuelle Messwerte von Vibrationen reagieren und seine Schwingungseigenschaften blitzschnell anpassen. Eine solche Anlage wäre deutlich stabiler, und zugleich leichter zu konstruieren.

Weitere Forschung an «programmierbaren Materialien»

Beim Forschungsprojekt «Phononic Crystal with Adaptive Connectivity» arbeitete Empa-Forscher Bergamini mit der Arbeitsgruppe von Paolo Ermanni an der ETH Zürich zusammen. Beteiligt war ausserdem Massimo Ruzzene vom «Georgia Institute of Technology». In einem Folgeprojekt soll die Programmierbarkeit des Prototypen erweitert werden: «Bislang hat jedes Piezo-Element alleine, unabhängig von seinem Nachbarn, auf Schwingungen reagiert», erläutert Beramini. «In einem nächsten Schritt wollen wir die Elemente miteinander verschalten, um sie gemeinsam beziehungsweise koordiniert ansteuern zu können.»

Stichwort: Metamaterialien: 

Metamaterialien sind künstliche, periodisch aufgebaute Gebilde, deren Struktur kleiner ist als die Wellenlänge der von aussen einwirkenden Energieform. Solche Gebilde können interessante Effekte erzielen, etwa einen negativen Brechungsindex aufweisen und für Licht bestimmter Wellenlänge als «Tarnkappe» dienen. Metamaterialien können aus Metall oder Kunststoff bestehen. Das Material der einzelnen Bauteile ist nebensächlich – entscheidend ist, wie diese Bauteile gemeinsam auf äussere Einflüsse reagieren. Das an der Empa untersuchte Metamaterial reagiert auf Schwingungen – also auf Schallwellen.

Link zu „Advanced Materials“ – Ausgabe vom 5. März 2014
http://onlinelibrary.wiley.com/doi/10.1002/adma.v26.9/issuetoc

Weitere Informationen
Dr. Andrea Bergamini, Empa, Mechanics for Modelling & Simulation,
Tel. +41 58 765 4424, andrea.bergamini@empa.ch

http://www.empa.ch/plugin/template/empa/3/145148/—/l=1

Media Contact

Rainer Klose EMPA

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer