Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effizientere Materialien für Transformatoren

01.10.2014

Transformatoren stecken in nahezu jedem Elektrogerät. Wichtiger Werkstoff bei ihrem Bau sind Elektrobleche. Forscher haben einen Weg gefunden, die Bleche leistungsfähiger zu machen und effizienter zu produzieren. Dabei kommt ein optimiertes Laserverfahren zum Einsatz.

Transformatoren wandeln die Netzwechselspannung aus der Steckdose in die Betriebsspannung der Geräte um. Auch in Umspannwerken kommen sehr leistungsstarke Transformatoren zum Einsatz, um die Hochspannung in die für den Hausgebrauch übliche Netzspannung zu wandeln. Aufgebaut sind sie aus zwei Eisenkernen, um die jeweils unterschiedlich lange Drähte gewunden sind – Spulen.


Ein Wissenschaftler entnimmt Elektroblechproben aus der Versuchsanlage am Fraunhofer IWS. Die Bleche sind wichtiger Baustein von Transformatoren.

© Fraunhofer IWS

Die eine Spule erzeugt ein Wechselmagnetfeld, die andere durch das Magnetfeld wieder Spannung. Um Energieverluste bei diesem Prozess möglichst gering zu halten, kommen als Kernmaterial speziell bearbeitete Elektrobleche zum Einsatz. In ihrem »Urzustand« weisen diese Eisen-Silizium-Legierungen eine kornorientierte Gefügestruktur auf, welche die magnetischen Eigenschaften bestimmt.

»Kornorientiert« bedeutet, die Einzelkristalle im Material – auch Körner genannt – sind in einer regelmäßigen periodischen Abfolge angeordnet. »Durch eine gezielte Wärmebehandlung lassen sich Bereiche gleicher magnetischer Orientierung verkleinern. Dadurch ändert sich wiederum die magnetische Struktur des Blechs.

Es kommt zu einer geringeren Wärmeentwicklung und damit auch zu weniger Ummagnetisierungsverlusten im Material«, erläutert Dr. Andreas Wetzig, Abteilungsleiter Laserabtragen und -trennen am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden, die komplexen Vorgänge im Werkstoffinneren.

Als Verfahren hat sich seit vielen Jahren eine Behandlung mit Laserstrahlen etabliert. Während sich das rund einen Meter breite Bandmaterial mit einer Geschwindigkeit von mehr als 100 Meter pro Minute bewegt, werden quer zur Bandlaufrichtung fokussierte Laserstrahlen im Abstand von einigen Millimetern mit sehr hoher Geschwindigkeit (ca. 200 Meter pro Sekunde) über den Werkstoff geführt.

Laserstrahlen flexibel steuern

Diesen Prozess haben die Dresdner Wissenschaftler optimiert: »Uns ist es gelungen, den Laser so abzulenken, dass wir die Abstände zwischen den Laserstrahlen flexibel steuern und anpassen können«, erklärt Wetzig. Um dies zu erreichen, setzen die Forscher beispielsweise Galvanometerscanner ein.

Das sind elektromagnetisch angetriebene Drehachsen, an deren Ende sich ein Spiegel zur Ablenkung von Laserstrahlen befindet. Das macht das Bearbeitungsverfahren flexibler und es lässt sich an individuelle Bedingungen anpassen, etwa die Qualität des Ausgangsmaterials.

Auch die Produktionsgeschwindigkeit kann variiert werden. Ziel der Forscher ist vor allem, die Laserbearbeitung leichter in bestehende Produktionsumgebungen integrieren zu können. Das spart Zeit und Kosten.

Zudem setzen die Wissenschaftler seit kurzem einen neuen Lasertyp ein, der die Verlustleistung innerhalb des Elektroblechs noch weiter reduzieren soll: Einen Faserlaser, der zur Gruppe der Festkörperlaser gehört. »Unsere bisherigen Ergebnisse sind vielversprechend, da die Wärmeabsorption besser ist als bei den üblicherweise verwendeten CO2-Lasern«, so Wetzig.

Statt der bisher üblichen zehn lassen sich die Ummagnetisierungsverluste damit um bis zu 15 Prozent reduzieren. Das optimierte Verfahren wird derzeit bei einem ersten Kunden implementiert.

Bis zu einem Viertel weniger Stromverbrauch möglich

Aktuell arbeiten die Experten vom IWS am nächsten Schritt: Sie wollen ihre Technologie künftig auch auf Elektrobleche für Motoren ausweiten. Diese Werkstoffe weisen jedoch eine andere, nicht kornorientierte Struktur auf und haben demzufolge auch andere magnetische Eigenschaften.

»Daher lässt sich unser Verfahren nicht einfach eins zu eins übertragen«, erklärt Wetzig. Im Fall der Laserbehandlung von nichtkornorientierten Elektroblechen hängen die erreichbaren Vorteile vom Arbeitspunkt des jeweiligen Motors ab. Der Arbeitspunkt ist der Schnittpunkt der Drehmoment/Drehzahl-Kennlinien von Antriebsmaschine und Arbeitsmaschine.

Für Hochleistungsantriebe wie beispielsweise Fahrmotoren, die mit hoher Drehzahl betrieben werden, ergeben sich um einige Prozent verringerte Verluste. Bei elektrischen Antrieben mit hohen Drehmomenten wie Motoren für Pumpen lässt sich der Stromverbrauch bis zu einem Viertel reduzieren.

Dr.-Ing. Andreas Wetzig | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Oktober/effizienter-materialien-fuer-transformatoren.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Flammschutzmittel – Verborgene Lebensretter in Kunststoffen
20.07.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wie man Stickstoff zwingt, sich zu binden
20.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie