Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effizientere Materialien für Transformatoren

01.10.2014

Transformatoren stecken in nahezu jedem Elektrogerät. Wichtiger Werkstoff bei ihrem Bau sind Elektrobleche. Forscher haben einen Weg gefunden, die Bleche leistungsfähiger zu machen und effizienter zu produzieren. Dabei kommt ein optimiertes Laserverfahren zum Einsatz.

Transformatoren wandeln die Netzwechselspannung aus der Steckdose in die Betriebsspannung der Geräte um. Auch in Umspannwerken kommen sehr leistungsstarke Transformatoren zum Einsatz, um die Hochspannung in die für den Hausgebrauch übliche Netzspannung zu wandeln. Aufgebaut sind sie aus zwei Eisenkernen, um die jeweils unterschiedlich lange Drähte gewunden sind – Spulen.


Ein Wissenschaftler entnimmt Elektroblechproben aus der Versuchsanlage am Fraunhofer IWS. Die Bleche sind wichtiger Baustein von Transformatoren.

© Fraunhofer IWS

Die eine Spule erzeugt ein Wechselmagnetfeld, die andere durch das Magnetfeld wieder Spannung. Um Energieverluste bei diesem Prozess möglichst gering zu halten, kommen als Kernmaterial speziell bearbeitete Elektrobleche zum Einsatz. In ihrem »Urzustand« weisen diese Eisen-Silizium-Legierungen eine kornorientierte Gefügestruktur auf, welche die magnetischen Eigenschaften bestimmt.

»Kornorientiert« bedeutet, die Einzelkristalle im Material – auch Körner genannt – sind in einer regelmäßigen periodischen Abfolge angeordnet. »Durch eine gezielte Wärmebehandlung lassen sich Bereiche gleicher magnetischer Orientierung verkleinern. Dadurch ändert sich wiederum die magnetische Struktur des Blechs.

Es kommt zu einer geringeren Wärmeentwicklung und damit auch zu weniger Ummagnetisierungsverlusten im Material«, erläutert Dr. Andreas Wetzig, Abteilungsleiter Laserabtragen und -trennen am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden, die komplexen Vorgänge im Werkstoffinneren.

Als Verfahren hat sich seit vielen Jahren eine Behandlung mit Laserstrahlen etabliert. Während sich das rund einen Meter breite Bandmaterial mit einer Geschwindigkeit von mehr als 100 Meter pro Minute bewegt, werden quer zur Bandlaufrichtung fokussierte Laserstrahlen im Abstand von einigen Millimetern mit sehr hoher Geschwindigkeit (ca. 200 Meter pro Sekunde) über den Werkstoff geführt.

Laserstrahlen flexibel steuern

Diesen Prozess haben die Dresdner Wissenschaftler optimiert: »Uns ist es gelungen, den Laser so abzulenken, dass wir die Abstände zwischen den Laserstrahlen flexibel steuern und anpassen können«, erklärt Wetzig. Um dies zu erreichen, setzen die Forscher beispielsweise Galvanometerscanner ein.

Das sind elektromagnetisch angetriebene Drehachsen, an deren Ende sich ein Spiegel zur Ablenkung von Laserstrahlen befindet. Das macht das Bearbeitungsverfahren flexibler und es lässt sich an individuelle Bedingungen anpassen, etwa die Qualität des Ausgangsmaterials.

Auch die Produktionsgeschwindigkeit kann variiert werden. Ziel der Forscher ist vor allem, die Laserbearbeitung leichter in bestehende Produktionsumgebungen integrieren zu können. Das spart Zeit und Kosten.

Zudem setzen die Wissenschaftler seit kurzem einen neuen Lasertyp ein, der die Verlustleistung innerhalb des Elektroblechs noch weiter reduzieren soll: Einen Faserlaser, der zur Gruppe der Festkörperlaser gehört. »Unsere bisherigen Ergebnisse sind vielversprechend, da die Wärmeabsorption besser ist als bei den üblicherweise verwendeten CO2-Lasern«, so Wetzig.

Statt der bisher üblichen zehn lassen sich die Ummagnetisierungsverluste damit um bis zu 15 Prozent reduzieren. Das optimierte Verfahren wird derzeit bei einem ersten Kunden implementiert.

Bis zu einem Viertel weniger Stromverbrauch möglich

Aktuell arbeiten die Experten vom IWS am nächsten Schritt: Sie wollen ihre Technologie künftig auch auf Elektrobleche für Motoren ausweiten. Diese Werkstoffe weisen jedoch eine andere, nicht kornorientierte Struktur auf und haben demzufolge auch andere magnetische Eigenschaften.

»Daher lässt sich unser Verfahren nicht einfach eins zu eins übertragen«, erklärt Wetzig. Im Fall der Laserbehandlung von nichtkornorientierten Elektroblechen hängen die erreichbaren Vorteile vom Arbeitspunkt des jeweiligen Motors ab. Der Arbeitspunkt ist der Schnittpunkt der Drehmoment/Drehzahl-Kennlinien von Antriebsmaschine und Arbeitsmaschine.

Für Hochleistungsantriebe wie beispielsweise Fahrmotoren, die mit hoher Drehzahl betrieben werden, ergeben sich um einige Prozent verringerte Verluste. Bei elektrischen Antrieben mit hohen Drehmomenten wie Motoren für Pumpen lässt sich der Stromverbrauch bis zu einem Viertel reduzieren.

Dr.-Ing. Andreas Wetzig | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Oktober/effizienter-materialien-fuer-transformatoren.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

moove und Sony Lifelog machen mobil

17.01.2017 | Unternehmensmeldung

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften