Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Infrarot-Wärme für neuartige Verbundwerkstoffe

04.05.2011
Infrarot-Strahler helfen Prozesszeiten zu verkürzen

Flugzeuge und Automobile sollen leichter werden, um Kraftstoff zu sparen, für die Fahrgäste müssen sie jedoch genauso sicher bleiben.


Die Erwärmung von Kompositen wird im hauseigenen Anwendungszentrum bei Heraeus Noblelight getestet.


Infrarot-Strahler helfen glasfaserverstärkte Druckbehälter zu verschweißen.

Copyright Heraeus Noblelight 2011

Rotorblätter von Windenergieanlagen sollen leicht, aber gleichzeitig sehr belastbar sein. Infrarot-Wärme kann helfen, diese Anforderungen zu erfüllen.

Faserverstärkte Kunststoffe sind moderne Verbundwerkstoffe; sie bestehen aus Kunststoffen wie Polyphenylsulfid (PPS), Polyetheretherketon (PEEK) oder Epoxidharzen (EP), in die Carbon- oder Glas-Fasern eingebettet wurden.

Die Fasern machen das Bauteil fest und steif, die Kunststoffmatrix kann die auftretende Energie absorbieren. Viele hoch belastete Bauteile im Auto, wie Lenkrohre, die hohen Torsionskräften ausgesetzt sind, oder auch Elemente für den Seitenaufprallschutz werden aus diesen Kompositen hergestellt.

Bei der Herstellung solcher modernen Bauteile kommen Infrarot-Systeme zum Einsatz, weil sie diese Materialien schnell und homogen erwärmen und so die Prozesszeiten verkürzen.

Komposite sind verschieden, je nach ihrem späteren Einsatz. Kurzfaserverstärkte Duroplaste für große Karosserieteile, langfaserverstärkte Thermoplaste für hoch belastete Strukturbauteile oder gewebte Rovings für Windflügel, allen gemeinsam ist, dass sie möglichst kosteneffizient hergestellt werden sollen.

Bei der Fertigung von Kompositmaterialien werden verschiedene Wärmeprozesse benötigt, etwa zum Aushärten der duroplastischen Kunststoffe. Thermoplasten werden erwärmt, um sie zu verschweißen, zu formen oder umzuformen.

Faservolumengehalt und Faserorientierung haben einen erheblichen Einfluss auf die Wärmeleitung, daher ist die homogene Erwärmung von Kompositmaterialien nicht trivial.

Infrarot-Strahler heizen schnell und homogen

Bisher führt man die erforderlichen Wärmeprozesse häufig mit konventionellen Heißluftöfen durch. Infrarot-Wärmetechnologie bietet dagegen einige Vorteile.

Infrarot-Strahler zeigen sehr kurze Reaktionszeiten innerhalb von Sekunden, das macht Wärme regelbar und hilft, Energie richtig zu dosieren. Wenn die Wärmequelle nur dann angeschaltet sein muss, wenn sie gebraucht wird, spart man Energie.

Infrarot-Systeme sind relativ kompakte Wärmeeinheiten, die große Werkteile am Band erwärmen, ohne dass ein großvolumiger Ofen für das komplette Teil benötigt wird.

Infrarot-Strahlung kann genau an Produkt und Prozess angepasst werden, moderne numerische Methoden wie das Ray tracing oder Computational Fluid Dynamics helfen zusätzlich, große Flächen homogen zu erwärmen, indem beispielsweise die Energieverteilung auf der Fläche optimiert wird.

Komposite verschweißen mit Infrarot-Wärme

Ein britisches Unternehmen setzt Behälter aus glasfaserverstärktem Polypropylen für die Wasseraufbereitung ein. Die zylindrischen Wassertanks werden aus zwei Hälften gefertigt, die dann durch kurzwellige Infrarot-Strahlung miteinander verschweißt werden. Die Glasfasern sorgen dafür, dass die Behälter möglichst robust sind, denn sie sollen im Gebrauch einem Innendruck von etwa 10 bar standhalten können. Sie sind aber auch der Grund dafür, dass herkömmliches Schweißen mit Kontaktwärme schwierig durchzuführen ist. Die Glasfasern im Kunststoff werden durch das Anschmelzen der Oberfläche frei gelegt und beschädigen die heißen Kontakt-Platten.

Infrarot-Strahler übertragen dagegen Energie kontaktfrei und erzeugen die Wärme erst im Material. Es kann also kein Material an der Wärmequelle hängen bleiben. Ein Modul mit sechs kurzwelligen Infrarot-Strahlern erhitzt die Enden der vorgefertigten Zylinderhälften, dann wird das Modul automatisch herausgefahren. Die Teile mit den erwärmten, weichen Enden werden zusammengedrückt und so verschweißt.

Tests haben gezeigt, dass diese Verbindung auch unter sehr hohem Druck hält, bis zu 28 bar wurden angelegt, ohne die Verbindung zu zerstören.
Durch die kontaktfreie Erwärmung muss die Wärmequelle nicht ständig gereinigt werden. Der gesamte Prozess ist sehr energieeffizient, denn der Infrarot-Strahler ist nur dann angeschaltet, wenn Wärme benötigt wird.

Energieeffizienz durch exakte Anpassung
Die Infrarot-Wärmetechnologie bietet einige Möglichkeiten, bei industriellen Wärmeprozessen den Energieeinsatz zu optimieren:
• hohe Wärmeübertragungskapazität
• kontaktfreie Wärmeübertragung
• hoher Wirkungsgrad
• effiziente Energieübertragung durch die optimale Wellenlänge
• örtlich begrenzter Energieeinsatz durch Anpassung an die Form der Produkte
• zeitlich begrenzter Energieeinsatz durch schnelle Reaktionszeiten
Infrarot-Wärme wird immer dann eingesetzt, wenn Wärmeprozesse mit besonderen Vorgaben an Platz, Zeit oder Qualität gelöst werden sollen.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China und Australien, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2009 einen Jahresumsatz von 71,6 Millionen € auf und beschäftigte weltweit 707 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Heraeus
Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit einer über 155-jährigen Tradition. Unsere Geschäftsfelder umfassen die Bereiche Edelmetalle, Sensoren, Biomaterialien und Medizinprodukte, Dentalprodukte sowie Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von 2,6 Mrd. € und einem Edelmetallhandelsumsatz von 13,6 Mrd. € sowie weltweit über 12.300 Mitarbeitern in mehr als 110 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Für weitere Informationen wenden Sie sich bitte an:

Hersteller:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Redaktion:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Weitere Informationen:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie