Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchschlagendes Design: die Giftklauen der Spinnen

03.05.2012
Spinnen verdanken ihren Jagderfolg unter anderem dem raffiniert zusammengesetzten und strukturierten Material ihrer Giftklauen

Dem Biss einer Spinne haben Fliegen, Heuschrecken und andere Beuteinsekten wenig entgegenzusetzen, obwohl ihr Panzer im Wesentlichen aus demselben Material besteht wie die Giftklauen des Räubers.


Jagderfolg dank Materialvorsprung: Cupiennius salei, eine tropische Jagdspinne, durchbohrt den Panzer von Beuteinsekten mit einer Giftklaue. Diese besteht zwar wie der Cuticulapanzer der Beute aus Chitin und Proteinen, ihre genaue chemische Zusammensetzung und Struktur sind aber für ihren Zweck optimiert. © Friedrich G. Barth


oben: Ein Mikrocomputertomographisches Bild der Spitze einer Giftklaue. Der orange Pfeil zeigt auf die Öffnung des Giftkanals.

unten: Die Verteilung der Metallionen Zink (rot) und Kalzium (blau) und von Chlor (grün) werden mittels energiedispersiver Röntgenspektroskopie analysiert und mit Fehlfarben sichtbar gemacht. Zink und Chlor treten in der äußeren Schicht der Giftklaue auf, während das Kalzium sich im Inneren befindet. Zudem wird eine erhöhte Konzentration von Zink im Inneren der Klauenspitze beobachtet.

© MPI für Kolloid- und Grenzflächenforschung

Doch wie Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam, das Max-Planck-Instituts für Mikrostrukturphysik in Halle sowie der Universität Wien herausgefunden haben, sind die Chitinfasern in den Giftklauen von Jagdspinnen so angeordnet und mit Proteinen umgeben, dass das Material besonders fest und steif wird und den Cuticulapanzer der Beutetiere durchbohren kann.

Die Giftklauen werden so zu perfektionierten wiederverwendbaren Injektionsnadeln für das lähmende Spinnengift. Die neuen Erkenntnisse können Anregungen aus der Biologie liefern, wie sich ähnliche technische Materialien für unterschiedliche Anwendungen optimieren lassen.

Die Natur nutzt faserverstärkte Materialien schon viel länger als die Technik. So bestehen die Panzer von Gliederfüßern wie Spinnentieren, Insekten und Krustentieren, deren Material Biologen Cuticula nennen, aus einer Vielzahl feinster Schichten von Chitinfasern. Diese ordnen sich parallel zur Oberfläche an und sind typischerweise in eine Proteinmatrix eingebettet.

Dem jeweiligen, sehr unterschiedlichen Verwendungszweck passt sich dieses natürliche Verbundmaterial dadurch an, dass die Zusammensetzung sowie die Form des Materials in verschiedenen Teilen des Außenskeletts stark variiert wird. Die Anordnung der Fasern und die Proteinzusammensetzung beeinflussen die mechanischen Eigenschaften des Materials entscheidend.

„Die detaillierten Untersuchungen des Cuticulapanzers können daher viele neue Ideen für ein besseres, bio-inspiriertes Materialdesign hervorbringen“, sagt Yael Politi, die gemeinsam mit ihren Kollegen nun Spinnen auf den Zahn gefühlt hat. Diese Einschätzung gilt ganz besonders für Strukturen wie die Giftklauen, da deren ‘Design‘ wegen ihrer lebenswichtigen Funktion sicher unter besonders großem evolutionärem Druck stand. Da sich die technische Perfektion einer biologischen Struktur nur dann ganz verstehen lässt, wenn man deren natürliche Funktion berücksichtigt, arbeiteten die Wissenschaftler der Max-Planck-Institute in Potsdam und in Halle eng mit Friedrich Barth von der Universität Wien zusammen, einem Biologen und Experten für Spinnen, insbesondere deren sensorische Systeme und Biomechanik .

Die Anordnung der Chitinfasern beeinflusst die Materialeigenschaften

In ihren Untersuchungen erkannten die Wissenschaftler, dass sich die Struktur des Materials in den Giftklauen der Wanderspinne Cupiennius salei von derjenigen anderer Skelettteile deutlich unterscheidet. Vor allem die Chitinfasern ordnen sich darin auf besondere Weise an. In einer speziellen Zone verlaufen die Fasern in verschiedenen Schichten vorwiegend in der Richtung, in der auch hohe mechanische Spannungen während des Bisses zu erwarten sind. Das verleiht der Giftklaue eine maßgeschneiderte mechanische Belastbarkeit. Denn die Chitinfasern sind parallel zu ihrer Längsachse immer steifer als senkrecht dazu. „Den höchsten Grad dieser gleichförmigen Ausrichtung haben wir im mittleren Bereich der Giftklaue gefunden“, erklärt Friedrich Barth.

Metallionen verstärken die Stabilität der Giftklauenspitze

Auch die Proteinstruktur in der Giftklaue ist für deren Zweck optimiert. Proteine zeichnen sich durch hohe chemische Variabilität aus und können entsprechend leicht verändert werden. Die Spinne nutzt auch dies für ihre Giftklauen aus, um sich bei der Jagd einen materialtechnischen Vorteil gegenüber ihrer Beute zu verschaffen. „Erstaunlicherweise bestehen die Zahnspitze und die äußeren Cuticulaschichten, die bei ihrem Biss der höchsten Belastung ausgesetzt sind, vorwiegend aus Proteinen“, sagt Friedrich Barth. Die Proteinzusammensetzung ändert sich von der Basis zur Spitze der Giftklaue, wobei die Konzentration der Aminosäure Histidin stark ansteigt. Histidin eignet sich besonders gut, um mit Metallionen die Proteine stark zu vernetzen. Da die Forscher auch Zink und Kalzium in der Proteinmatrix fanden, vermuten sie, dass benachbarte Fasern in der Proteinmatrix der Zahnspitze tatsächlich vernetzt werden. Das macht die Spitze besonders hart und fest. Zudem leitet das stabile Proteinnetz den Druck beim Durchbohren eines Beutepanzers effektiv an die Chitinfasern weiter.

Auch stellten die Forscher fest, dass neben den Metallionen auch Chloridionen in dem Proteinnetz eingelagert sind. „Interessanterweise sind Chloridionen anders verteilt als die Metallionen“, sagt Yael Politi. Welche Funktion die Chlorid-Ionen übernehmen, nach welchen Kriterien die Verteilung der eingelagerten Elemente ausgewählt wird und wie sich dies auf die mechanischen Eigenschaften der Giftklaue auswirkt, ist bisher jedoch noch unklar.

Doch schon jetzt steht fest: „Die Giftklauen der Spinnen besitzen eine hoch spezialisierte Materialstruktur. Die Materialeigenschaften ändern sich von der Basis zur Spitze in feinen Abstufungen, und die äußere Schicht der Klauen ist auffallend abriebfest“, wie Yael Politi resümiert. Die verschiedenen chemischen und strukturellen Veränderungen zu studieren, die dafür verantwortlich sind, dass sich die Materialeigenschaften des Cuticulapanzers auf so feine Weise an bestimmte biologische Funktionen anpassen, ist für die Forscher ein ausgesprochen lohnendes Ziel. Ihre Arbeit könnte durchaus auch von praktischem Nutzen sein. „Das Wissen, das wir dabei gewinnen, könnte zum Beispiel die Grundlage für die Entwicklung von Materialien für besondere Anwendungen oder von Injektionsnadeln mit speziellen Formen und Materialeigenschaften für Anwendungen in der Medizin legen“, so Politi.

Ansprechpartner

Dr. Yael Politi
Telefon: +49 331 567-9408
Fax: +49 331 567-9402
Email: Yael.politi@­mpikg.mpg.de
Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
Email: katja.schulze@­mpikg.mpg.de
Originalveröffentlichung
Yael Politi, Matthias Priewasser, Eckhard Pippel, Paul Zaslansky, Jürgen Hartmann, Stefan Siegel, Chenghao Li, Friedrich G. Barth, Peter Fratzl
A Spider's Fang: How to Design an Injection Needle Using Chitin-Based Composite Material

Advanced Functional Materials, 22. März 2012; DOI:10.1002/adfm.201200063

Dr. Yael Politi | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5763300/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie