Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch auf dem Weg zum künstlichen Muskel - neue Plattformtechnologie erzielt tolle Ergebnisse

16.03.2012
Dielektrische Elastomer-Aktoren (DEA's) gelten als eine große Hoffnung für die Herstellung künstlicher Muskel und könnten an vielen Stellen als ressourcenschonende technologische Alternative für Elektromotoren, Pneumatiken oder hydraulische Antriebe eingesetzt werden.

DEA's sind vom Prinzip her sehr einfach aufgebaut. Zwischen zwei flächig mit Metallen beschichteten Oberflächen - den Elektroden - liegt ein elektrisch isolierendes Dielektrikum aus elastomeren Materialien, zum Beispiel Gummi. Beim Anlegen einer elektrischen Spannung entsteht ein elektrostatischer Druck, der das weiche Gummimaterial zur Dehnung zwingt.


Dünne Elektrodenschicht aus flexiblen Carbonnanofibrillen, eingebettet im dielektrischen Silikonelastomer
Bild: Fraunhofer IWS Dresden

Intelligente Lösung gesucht

Genau in dieser Materialkombination besteht in der Praxis eine große Herausforderung, die seit vielen Jahren den breiten technologischen Einsatz solcher DEA's immer wieder verhindert: Die wenig dehn- und streckbaren elektrisch leitenden metallischen Schichten reißen auf dem weichen Gummimaterial bei Dehnungen sehr schnell und werden damit zerstört. Bislang konnte man diesem Problem nur mit kostenintensiven und hochkomplexen Maßnahmen begegnen. Forscher des Fraunhofer-Institutes für Werkstoff- und Strahltechnik IWS Dresden, des Fraunhofer-Institutes für Keramische Technologien und Systeme IKTS Dresden und der TU Dresden haben sich deshalb die Frage gestellt: Gibt es einen radikal neuen, insbesondere einfachen und auch technologisch gangbaren Weg, der all die beschriebenen Nachteile auf einen Schlag behebt?

Ein Material für Alles

Die verblüffend einfache Idee: Warum ersetzt man die Metallschicht nicht einfach durch eine elektrisch leitende Gummischicht und umgeht auf diese Weise die schon beschriebene Inkompatibilität zwischen den metallischen Elektroden und dem dielektrischen Gummikörper? Bisher gab es kein kommerziell erhältliches Elastomer, das gleichzeitig sowohl elektrisch isolierend als auch elektrisch leitend sein kann. Mit einem Trick gelang es den Dresdner Forschern, ein elastomeres, elektrisch leitendes Gummimaterial zu erzeugen. Sie mischten winzige Mengen elektrisch leitfähiger Carbon-Nanofibrillen in ein Elastomer, welches nahezu identische Dehneigenschaften aufwies wie das elektrisch isolierende Gummimaterial. Durch die Zugabe der Nanofibrillen wird das Elastomer leitfähig. Ein mit diesem leitfähigen Material beschichteter isolierender Gummikörper versagte in Dehnversuchen auch nach Millionen von Zyklen nicht.

Einfache Herstellung und große Performance

Nach diesem bahnbrechenden Erfolg war der Bau von technisch einsetzbaren Aktoren der logische nächste Schritt für das Forscherkonsortium. In kürzester Zeit und unter Nutzung industrieller Standardtechnologien gelang es dem Team, dielektrische Elastomer-Aktoren aufzubauen. Sie bestehen aus einer Vielzahl an wechselweise leitfähigen und isolierenden Elastomerschichten, jede jeweils nur 0,03 mm dick. Dabei wurde auch der Nachweis der Einsetzbarkeit von Dickschicht- und Drucktechniken sowie großflächiger Rolle-zu-Rolle-Technologien geführt. Die Testergebnisse eines so hergestellten Multilagen-Ring-Aktors aus 11 aktiven Schichten und einer aktiven Fläche von 465 cm2 sind vielversprechend: Lineare Dehnungen im Prozentbereich und gleichzeitig beachtliche Kräfte von ca. 100 N wurden erzielt. Auch nach 140 000 Betriebszyklen ist der Ring-Aktor noch voll einsatzbereit.

Hervorragende Perspektiven als Plattformtechnologie

Insgesamt stellen die vom Konsortium erfolgreich entwickelten Material- und Beschichtungstechniken eine hoch attraktive und kostengünstige Plattform- und Querschnittstechnologie dar, welche in absehbarer Zeit den Einsatz aktorisch-aktiver Strukturen in vielen technologischen Feldern ermöglichen. Ebenso ist auch der Einsatz in benachbarten Feldern wie der Sensorik und dem Energy Harvesting denkbar.

Die vorgestellten Ergebnisse wurden im Rahmen des Projektes „Candela“ erzielt. Dieses Forschungs- und Entwicklungsprojekt wurde mit Mitteln des BMBF unter dem Förderkennzeichen 13N10661 und 13N10660 gefördert und vom Projektträger VDI Technologiezentrum GmbH (VDI-TZ), Abteilung EINS, Bereich 'Nanotechnologien' betreut.

Ihre Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Dr. Oliver Jost
Telefon: (0351) 83391 3477
Telefax: (0351) 83391 3300
E-Mail: oliver.jost@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.projekt-candela.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen