Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch auf dem Weg zum künstlichen Muskel - neue Plattformtechnologie erzielt tolle Ergebnisse

16.03.2012
Dielektrische Elastomer-Aktoren (DEA's) gelten als eine große Hoffnung für die Herstellung künstlicher Muskel und könnten an vielen Stellen als ressourcenschonende technologische Alternative für Elektromotoren, Pneumatiken oder hydraulische Antriebe eingesetzt werden.

DEA's sind vom Prinzip her sehr einfach aufgebaut. Zwischen zwei flächig mit Metallen beschichteten Oberflächen - den Elektroden - liegt ein elektrisch isolierendes Dielektrikum aus elastomeren Materialien, zum Beispiel Gummi. Beim Anlegen einer elektrischen Spannung entsteht ein elektrostatischer Druck, der das weiche Gummimaterial zur Dehnung zwingt.


Dünne Elektrodenschicht aus flexiblen Carbonnanofibrillen, eingebettet im dielektrischen Silikonelastomer
Bild: Fraunhofer IWS Dresden

Intelligente Lösung gesucht

Genau in dieser Materialkombination besteht in der Praxis eine große Herausforderung, die seit vielen Jahren den breiten technologischen Einsatz solcher DEA's immer wieder verhindert: Die wenig dehn- und streckbaren elektrisch leitenden metallischen Schichten reißen auf dem weichen Gummimaterial bei Dehnungen sehr schnell und werden damit zerstört. Bislang konnte man diesem Problem nur mit kostenintensiven und hochkomplexen Maßnahmen begegnen. Forscher des Fraunhofer-Institutes für Werkstoff- und Strahltechnik IWS Dresden, des Fraunhofer-Institutes für Keramische Technologien und Systeme IKTS Dresden und der TU Dresden haben sich deshalb die Frage gestellt: Gibt es einen radikal neuen, insbesondere einfachen und auch technologisch gangbaren Weg, der all die beschriebenen Nachteile auf einen Schlag behebt?

Ein Material für Alles

Die verblüffend einfache Idee: Warum ersetzt man die Metallschicht nicht einfach durch eine elektrisch leitende Gummischicht und umgeht auf diese Weise die schon beschriebene Inkompatibilität zwischen den metallischen Elektroden und dem dielektrischen Gummikörper? Bisher gab es kein kommerziell erhältliches Elastomer, das gleichzeitig sowohl elektrisch isolierend als auch elektrisch leitend sein kann. Mit einem Trick gelang es den Dresdner Forschern, ein elastomeres, elektrisch leitendes Gummimaterial zu erzeugen. Sie mischten winzige Mengen elektrisch leitfähiger Carbon-Nanofibrillen in ein Elastomer, welches nahezu identische Dehneigenschaften aufwies wie das elektrisch isolierende Gummimaterial. Durch die Zugabe der Nanofibrillen wird das Elastomer leitfähig. Ein mit diesem leitfähigen Material beschichteter isolierender Gummikörper versagte in Dehnversuchen auch nach Millionen von Zyklen nicht.

Einfache Herstellung und große Performance

Nach diesem bahnbrechenden Erfolg war der Bau von technisch einsetzbaren Aktoren der logische nächste Schritt für das Forscherkonsortium. In kürzester Zeit und unter Nutzung industrieller Standardtechnologien gelang es dem Team, dielektrische Elastomer-Aktoren aufzubauen. Sie bestehen aus einer Vielzahl an wechselweise leitfähigen und isolierenden Elastomerschichten, jede jeweils nur 0,03 mm dick. Dabei wurde auch der Nachweis der Einsetzbarkeit von Dickschicht- und Drucktechniken sowie großflächiger Rolle-zu-Rolle-Technologien geführt. Die Testergebnisse eines so hergestellten Multilagen-Ring-Aktors aus 11 aktiven Schichten und einer aktiven Fläche von 465 cm2 sind vielversprechend: Lineare Dehnungen im Prozentbereich und gleichzeitig beachtliche Kräfte von ca. 100 N wurden erzielt. Auch nach 140 000 Betriebszyklen ist der Ring-Aktor noch voll einsatzbereit.

Hervorragende Perspektiven als Plattformtechnologie

Insgesamt stellen die vom Konsortium erfolgreich entwickelten Material- und Beschichtungstechniken eine hoch attraktive und kostengünstige Plattform- und Querschnittstechnologie dar, welche in absehbarer Zeit den Einsatz aktorisch-aktiver Strukturen in vielen technologischen Feldern ermöglichen. Ebenso ist auch der Einsatz in benachbarten Feldern wie der Sensorik und dem Energy Harvesting denkbar.

Die vorgestellten Ergebnisse wurden im Rahmen des Projektes „Candela“ erzielt. Dieses Forschungs- und Entwicklungsprojekt wurde mit Mitteln des BMBF unter dem Förderkennzeichen 13N10661 und 13N10660 gefördert und vom Projektträger VDI Technologiezentrum GmbH (VDI-TZ), Abteilung EINS, Bereich 'Nanotechnologien' betreut.

Ihre Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Dr. Oliver Jost
Telefon: (0351) 83391 3477
Telefax: (0351) 83391 3300
E-Mail: oliver.jost@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de
http://www.projekt-candela.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics