Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dünnschicht-Solarzellen aus Nanokristallen

02.07.2015

Der Wirkungsgrad von Solarzellen aus Perowskit hat sich in den vergangenen Jahren sehr schnell verbessert. Auf dem Weg zur Marktreife sind jedoch noch Herausforderungen zu bewältigen. Forscher des Karlsruher Instituts für Technologie (KIT) wollen die Entwicklung von Perowskit-Solarzellen vorantreiben. So lassen sich etwa durch ein besonderes Dünnschichtverfahren Material und Kosten sparen. An Lösungen für die Herstellung der neuen Photovoltaik-Technologie forscht ein interdisziplinäres Wissenschaftler-Team in den kommenden drei Jahren im Projekt „NanoSolar“.

Perowskit-Solarzellen haben in den vergangenen Jahren eine beispiellose Entwicklung durchlaufen: Innerhalb von nur fünf Jahren wurde ihr Wirkungsgrad erheblich gesteigert, sie setzen mittlerweile über 20 Prozent der Sonnenstrahlung in elektrische Energie um.


Im Projekt „NanoSolar“ wollen die Forscher des KIT kleinste Kristalle des Minerals Perowskit gezielt einstellen und in Solarzellen integrieren

Abb.: NanoSolar

Niedrige Materialkosten und ein geringer Materialeinsatz durch Dünnschicht-Technologie machen Perowskit-Solarzellen zu einer vielversprechenden Alternative, mit der die Kosten für die Wandlung von Sonnenlicht in elektrische Energie gesenkt werden können. Ein entscheidender Nachteil der Technologie ist bislang jedoch die Verwendung von umweltschädlichen Bleiverbindungen zur Herstellung der Perowskit-Kristalle.

„Wir suchen nach einem Weg, ungiftige Metalle einzusetzen“, sagt Dr. Alexander Colsmann, der am Lichttechnischen Institut des KIT die Abteilung Organische Photovoltaik leitet. Wenn es gelinge, nachhaltige, umweltfreundliche Herstellungsprozesse für diese neue Technologie zu etablieren, könnten Perowskit-Solarzellen neben der großflächigen Stromerzeugung auch für die dezentrale Energieversorgung genutzt werden, so der Physiker.

„Das Material einer Dünnschicht-Solarzelle hat ein homogenes Erscheinungsbild und eignet sich deshalb zum Beispiel als Fassadenverkleidung“, sagt Colsmann. Die Entwicklung umweltfreundlicher Perowskit-Solarzellen sei nicht nur im Sinne der Nachhaltigkeit erforderlich, sondern auch eine wesentliche Voraussetzung für ihren wirtschaftlichen Erfolg.

Am Projekt „NanoSolar – Kontrollierte Abscheidung von Nanokristallen für Perowskit-Solarzellen” sind Wissenschaftler des LTI (Arbeitsgruppe Dr. Alexander Colsmann) und des Instituts für anorganische Chemie (Arbeitsgruppe Professor Dr. Claus Feldmann) am KIT beteiligt.

Zu dem interdisziplinären Team gehören Physiker, Chemiker, Materialwissenschaftler und Ingenieure. Ziel ist es die nanoskaligen Kristallstrukturen gezielt einzustellen und neuartige, umweltfreundliche Materialien und Prozesse zur Herstellung von Perowskiten zu entwickeln, um sie in Solarzellen zu integrieren.

Die Forscher untersuchen den gesamten Prozess von der Synthese der Materialien bis zum Demonstrator-Modul, das eine funktionsfähige Solarzelle zeigt. Hergestellt werden die Perowskit-Solarzellen – ähnlich wie organische Solarzellen – mittels Druck- und Beschichtungsverfahren. „NanoSolar“ verbindet Grundlagenforschung und anwendungsorientierte Wissenschaft.

Um die neue Technologie fundamental zu verstehen, untersuchen die Wissenschaftler die Beziehungen zwischen den Strukturen und den Eigenschaften der Materialien, um diese zu optimieren. Das auf drei Jahre ausgelegte Projekt „NanoSolar“ wird durch die Baden-Württemberg-Stiftung innerhalb des Forschungsprogramms „Funktionelle Oberflächen und Materialien für eine nachhaltige Energieversorgung“ mit 530.000 Euro finanziert.

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, E-Mail: margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie