Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dotierte Graphenbänder mit Potential

08.09.2014

Als ultraschmales Band hat Graphen Halbleitereigenschaften– obwohl das Material eigentlich leitend ist.

Forschende der Empa und des Max Planck Institutes für Polymerforschung haben nun Graphenmoleküle mit Stickstoffatomen dotiert. Indem sie dotierte und nicht-dotierte Graphenstücke nahtlos aneinanderreihten, konnten sie in den Nanobändern «Heteroübergänge» etablieren, die Voraussetzung, dass Strom beim Anlegen einer Spannung nur in eine Richtung fliesst – der erste Schritt zu einem Graphen-Transistor. Zudem ist es dem Team gelungen, die Graphenbänder von ihrer Goldunterlage, auf der sie gewachsen sind, zu lösen und auf ein nichtleitendes Material zu übertragen.


Illustration eines p-n-Übergangs in einer Heterostruktur aus reinen und Stickstoff-dotierten (blau leuchtenden) Segmenten eines Graphenbandes

Graphen besitzt viele herausragende Eigenschaften: Es leitet ausgezeichnet Wärme und Strom, ist durchsichtig, härter als Diamant und enorm fest. Doch um effiziente elektronische Schalter daraus zu bauen, muss ein Material nicht nur hervorragend leiten können, sondern sollte auch «an»- und «ausgeschaltet» werden können. Dazu braucht es die so genannte Bandlücke, die den isolierenden Zustand in Halbleitern ermöglicht. Das Problem: Die Bandlücke ist bei Graphen verschwindend klein. Empa-Forschende der Abteilung «nanotech@surfaces» hatten deshalb vor einiger Zeit eine Methode entwickelt, eine Form von Graphen mit grösseren Bandlücken zu synthetisieren. Dazu liessen sie ultraschmale Graphenbänder durch molekulare Selbstorganisation «wachsen».

Graphenbänder aus unterschiedlich dotierten Segmenten

Nun haben die Forscher um Roman Fasel ein weiteres Etappenziel erreicht: Graphenbänder aus unterschiedlich dotierten Teilsegmenten. Anstatt der immer selben, «reinen» Kohlenstoffmoleküle verwendeten sie zusätzlich dotierte Moleküle – Moleküle, die an genau definierten Positionen mit «Fremdatomen», in diesem Fall Stickstoff, ausgestattet sind. Indem sie «normale» und mit Stickstoff dotierte Segmente auf einer Goldoberfläche (Au(111)) aneinander reihten, entstanden zwischen den einzelnen Segmenten so genannte Heteroübergänge.

Die Forscher haben gezeigt, dass diese ähnliche Eigenschaften aufweisen wie ein klassischer p-n-Übergang – also ein Übergang von einer Region positiver zu einer Region negativer Ladungen in einem Halbleiterkristall und die strukturelle Grundlage für viele Bauelemente der Halbleiterindustrie. Ein p-n-Übergang bewirkt, dass der Strom nur in eine Richtung fliesst. Wie Empa-Forscher gemeinsam mit Kollegen vom Rensselaer Polytechnic Institute in Troy/NY theoretisch dargelegt haben, ermöglicht die neue Graphenstreifen-Heterostruktur – wenn eine äussere Spannung angelegt wird – auch eine effiziente Trennung von Elektron-Loch-Paaren. Dies beeinflusst ganz direkt die Stromausbeute einer Solarzelle. Die entsprechenden Heteroübergänge in segmentierten Graphenbändern beschreiben die Forscher in der gerade erschienen Ausgabe von «Nature Nanotechnology».

Graphenbänder auf andere Substrate übertragen

Dabei lösten die Wissenschaftler noch ein weiteres Problem der Integration von Graphen-Nanotechnologie in die herkömmliche Halbleiterindustrie: Wie überträgt man die ultradünnen Graphenbänder auf eine andere Oberfläche? Denn so lange die Graphenbänder auf einem Metallsubstrat (wie hier Gold) liegen, sind sie als elektronische Schalter nicht zu gebrauchen. Gold leitet nämlich und erzeugt einen Kurzschluss, der die interessanten halbleitenden Eigenschaften des Graphenbands «sabotiert». Fasels Team und Kollegen vom Max-Planck-Institut für Polymerforschung in Mainz ist es gelungen zu zeigen, dass Graphenbänder in einem relativ einfachen Ätz- und Reinigungsprozess effizient und intakt auf ein (fast) beliebiges Substrat übertragen werden können, etwa auf Saphir, Kalziumfluorid oder Siliziumoxid.

So mausert sich Graphen immer mehr zu einem interessanten Halbleitermaterial und zu einer willkommenen Ergänzung des omnipräsenten Siliziums. Attraktiv sind die halbleitenden Graphenbänder deshalb, weil sie kleinere und somit energieeffizientere und schnellere elektronische Bauteile ermöglichen könnten als Silizium. Mit dem Einsatz von Graphenbändern in der Elektronikwelt ist allerdings noch nicht sehr bald zu rechnen. Gründe dafür sind Probleme beim Hochskalieren auf Industriemassstäbe oder beim Ersetzen von etablierter konventioneller Elektronik auf Siliziumbasis. Fasel schätzt, dass es noch etwa 10 bis 15 Jahre dauern dürfte, bis die ersten elektronischen Schalter aus Graphenbändern in einem Produkt verwendet werden könnten.

Graphenbänder für photovoltaische Bauteile

Auch photovoltaische Bauteile könnten dereinst auf Graphen basieren. In einer zweiten Arbeit, erschienen in «Nature Communications», beschreiben Pascal Ruffieux – ebenfalls aus der Empa-Abteilung «nanotech@surfaces» – und seine Kolleginnen und Kollegen einen möglichen Einsatz von Graphenstreifen etwa in Solarzellen. Ruffieux und Co. war aufgefallen, dass besonders schmale Graphenbänder sichtbares Licht aussergewöhnlich gut absorbieren und sich daher hervorragend als Absorberschicht in organischen Solarzellen eignen. Im Gegensatz zu «normalem» Graphen, das Licht bei allen Wellenlängen gleich stark absorbiert, kann die Lichtabsorption bei Graphennanobändern für bestimmte Wellenlängen gezielt und massiv erhöht werden, indem die Forscher die Breite der Graphenbänder atomar präzise «einstellen».

Unterstützung

Unterstützt wurde die Arbeit vom Schweizerischen Nationalfonds, von der Europäischen Wissenschaftsstiftung (ESF), vom Europäischen Forschungsrat (ECR) und vom Office of Naval Research (ONR).

Literaturhinweise
Graphene nanoribbon heterojunctions, J Cai, C A Pignedoli, L Talirz, P Ruffieux, H Söde, L Liang, V Meunier, R Berger, R Li, X Feng, K Müllen, R Fasel, Nature Nanotechnology, DOI: 10.1038/nnano.2014.184
Exciton-dominated optical response of ultra-narrow graphene nanoribbons, R Denk, M Hohage, P Zeppenfeld, J Cai, C A Pignedoli, H Söde, R Fasel, X Feng, K Müllen, S Wang, D Prezzi, A Ferretti, A Ruini, E Molinari, P Ruffieux, Nature Communications, 2014 Jul 8;5:4253, DOI: 10.1038/ncomms5253

Weitere Informationen
Prof. Dr. Roman Fasel, nanotech@surfaces, +41 58 765 43 48, roman.fasel@empa.ch
Dr. Pascal Ruffieux, nanotech@surfaces, +41 58 765 46 93, pascal.ruffieux@empa.ch
Redaktion / Medienkontakt
Martina Peter, Kommunikation, Tel. +41 58 765 49 87, redaktion@empa.ch

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/150695/---/l=1

Martina Peter | EMPA

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops