Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA als Lichtschalter

10.07.2014

Eine Nanostruktur aus zwei Goldstäbchen verändert bei Zugabe definierter DNA-Moleküle reversibel ihre optischen Eigenschaften

Die Elektronik hat Konkurrenz bekommen. Information wird immer häufiger mit Licht statt Elektronen übertragen und verarbeitet. Und wie die elektronischen Bauelemente sollen ihre photonischen Pendants auf Nanoformat schrumpfen.


Als nanooptische Schalter nutzt ein Team um Forscher des Max-Planck-Instituts für Intelligente Systeme Goldnanostäbchen, die jeweils paarweise durch ein Scharnier aus DNA-Strängen miteinander verbunden sind. Die Goldstäbchen sind unter einem Transmissionselektronenmikroskop als dunkle Balken zu erkennen, die DNA erscheint als krisselige Struktur dazwischen. Beim Schaltvorgang sind die Goldstäbchen überkreuz angeordnet, bei der Untersuchung im Elektronenmikroskop heften sie sich jedoch parallel an das Trägermaterial.

© Nature Materials 2014/MPI für Intelligente Systeme


Das Prinzip des DNA-Lichtschalters: Im entspannten Zustand formen die beiden Goldstäbchen ein rechtwinkliges Kreuz (mitte). Mit dem DNA-Fragment R1 lässt sich die Blockade am DNA-Strang a lösen, der mit einem der beiden Goldstäbchen verbunden ist. Nun vereinigen sich die Stränge a und b und verformen das Kreuz zu einem Andreaskreuz mit einem Winkel, bei dem die Gold-Nanostäbchen linksdrehend polarisiertes Licht absorbieren. Das DNA-Fragment R2 bewirkt, dass sich die Stränge c und zusammenschließen, wobei ein Andreaskreuz mit einem Winkel entsteht, bei dem rechtsdrehend polarisiertes Licht absorbiert wird. Die komplementären DNA-Fragmenten R1k und R2k lösen die Fragmente a und b beziehungsweise c und d wieder voneinander – das Kreuz entspannt sich.

© Nature Materials 2014 / MPI für Intelligente Systeme

Nun haben Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, der Ludwig-Maximilian-Universität in München sowie der Ohio University in Athens, USA, einen Schalter für die Nanooptik entwickelt. Eine zentrale Rolle spielen dabei zwei Gold-Nanostäbchen.

Ändert sich der Winkel zwischen ihnen, ändern sich auch bestimmte optische Eigenschaften des Nano-Lichtschalters. Den Winkel wiederum regulieren die Forscher mit Molekülen, die in der belebten Natur Träger der Erbinformation sind: mit DNA.

Mit zwei hauchdünnen Gold-Nanostäbchen, die 10.000 Mal dünner sind als ein menschliches Haar, ist es Forschern aus Stuttgart und München gelungen, einen variierbaren Filter für sogenanntes zirkular polarisiertes Licht zu erschaffen. Entscheidend dafür, wie das System das Licht absorbiert, ist dabei der Winkel zwischen den beiden Gold-Stäbchen.

Bei zirkular polarisiertem Licht rotiert die schwingende Lichtwelle um die Achse, entlang derer sich der Lichtstrahl ausbreitet. Je nach Drehrichtung lassen sich dabei links- und rechtsdrehende Polarisierungen unterscheiden. Viele Moleküle ändern ihre Absorptionseigenschaften für derartiges Licht, wenn man ihre innere räumliche Anordnung verändert.

Der Winkel zwischen zwei Goldstäbchen steuert deren Lichtabsorption

Diesen Umstand machten sich Physiker vom Max-Planck-Institut für Intelligente Systeme in Stuttgart, vom Center for NanoScience an der Fakultät für Physik der Ludwig-Maximilian-Universität in München und von der Ohio University in Athens, USA, zunutze. Je nachdem, in welchem Winkel sich die Goldstäbchen zueinander befinden, absorbieren sie entweder bevorzugt links zirkular polarisiertes Licht oder rechtes.

Die Experten nennen dieses Verhalten Zirkulardichroismus. Bei der Absorption, die auch von der eingestrahlten Wellenlänge abhängt, kommt es zur Anregung von kollektiven Elektronenschwingungen im Metallgitter, sogenannten Plasmonen. Die Resonanzbedingungen, die für die Absorption von links- oder rechtsdrehendem Licht erfüllt sein müssen, werden dabei auch von der Anordnung der Goldstäbchen zueinander beeinflusst.

Bei der Wahl des Metalls war es für die Forscher wichtig, dass ihre Anordnung den Zirkulardichroismus im Bereich des sichtbaren Lichts zeigt. „Dies ist nur bei Gold der Fall“, erklärt Laura Na Liu, die das Projekt auf Seiten des Max-Planck-Instituts für Intelligente Systeme leitete. Es stellte sich allerdings noch die Frage, wie sich der Winkel zwischen den Stäbchen von außen kontrolliert regulieren ließ. Die Wissenschaftler benötigten eine Art flexibles Scharnier zwischen den Gold-Nanostäbchen. Einen Schalter.

Hierzu fixierten sie jeden Nanostab zunächst auf jeweils einem sogenannten DNA-Origami-Bündel. Dabei handelt es sich um mehrfach gefaltete, insgesamt länglich ausgerichtete DNA-Strukturen. „Auf der Nanoskala sind Scharniere extrem schwer zu realisieren“, sagt Laura Na Liu. „Daher liegt die Verwendung von DNA gerade nach der Einführung von DNA Origami durchaus nahe.“

DNA-Fragmente wirken wie Klettverschlüsse am Goldkreuz

Die chemische Bindung zwischen jeweils einem DNA-Bündel und einem Gold-Stäbchen bewirkt, dass diese absolut parallel zueinander verlaufen. Zwei DNA-Bündel – und damit auch zugehörigen die Goldstäbe – liegen zunächst in annähernd rechtem Winkel über Kreuz. Ganz ähnlich wie man zwei kleine Äste im Wald übereinanderlegen würde.

Der eigentliche Trick bei der Anordnung bestand nun darin, die beiden DNA-Bündel und damit die daran befestigten Gold-Stäbchen gegeneinander verdrehen zu können. Hierbei machten sich die Forscher eine besondere Eigenschaft von DNA-Molekülen zunutze. Nämlich die, dass sich zwei DNA-Ketten zu einem Doppelstrang zusammenzutun, wenn die Abfolge der Basen entlang der beiden Einzelstränge komplementär ist.

Um das zu nutzen, ließen die Forscher an ganz bestimmten Stellen ihrer Bündel-Anordnung DNA-Molekülreste mit definierter Basenabfolge herausragen. Man kann sich diese Reste wie die eine Seite eines Klettverschlusses vorstellen. Zunächst sind diese Verschlüsse noch teilweise blockiert. Doch durch Zugabe definierter DNA-Molekülfragmente lässt sich die Blockade der Klettverschlüsse aufheben – so dass sie bereit sind, sich mit dem zu ihnen passenden Gegenstück zu verbinden.

Dieses Gegenstück ließen die Forscher am jeweils anderen DNA-Bündel herausragen. Auf die Weise rückte dann das untere Ende des vertikalen Bündels, je nach Art des zugegebenen DNA-Fragments, entweder mit dem rechten oder mit dem linken Ende des horizontalen Bündels zusammen. Die Folge: In beiden Fällen wurde die Kreuzanordnung mit annähernd rechtem Winkel in eine Art Andreaskreuz mit schräg übereinander liegenden Bündeln überführt. Da damit auch die Gold-Stäbchen ihre Ausrichtung zueinander änderten, änderte sich auch ihr Absorptionsverhalten von zirkular polarisiertem Licht.

Ein Sensor für biochemische Reaktionen

„Um solch einen Schalter auch für praktische Anwendungen nutzen zu können, ist es natürlich wichtig, dass dieser Vorgang umkehrbar, also reversibel ist“, erklärt Liu. Und in der Tat gelang den Forschern auch dies: Die Zugabe eines anderen DNA-Fragments bricht die Verbindung zwischen horizontalem und vertikalem Bündel nämlich wieder auf – und stellt damit die Ausgangslage wieder her. Durch erneute Zugabe von DNA kann der Prozess erneut gestartet werden. Und so fort.

Damit haben die Physiker eine Nanostruktur geschaffen, die sich mittels DNA-Molekülen reversibel schalten lässt. Daraus ergeben sich für die Forscher eine Reihe möglicher Anwendungen – nicht nur als Schaltelement in der Nanooptik oder der photonischen Informationsverarbeitung. So können sie sich beispielsweise vorstellen, ein solches System als Nanosensor für biochemische Reaktionen einzusetzen. Würde man eine der Reaktionskomponenten an die freien DNA-Reste, also die Enden der Klettverschlüsse binden, könnte die anschließende chemische Reaktion mit einer anderen Komponente die Konformation des gesamten Systems so verändern, dass sich dies durch Messen des Absorptionsverhaltens in Echtzeit verfolgen ließe. Auch die Konstruktion sogenannter optischer Superflüssigkeiten sei denkbar, so die Forscher. Bei diesen ließe sich, quasi auf Knopfdruck, der Brechungsindex einstellen.

Ansprechpartner

Annette Stumpf

Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Telefon: +49 711 689-3089
Fax: +49 711 689-1932

 

Originalpublikation

 

Anton Kuzyk, Robert Schreiber, Hui Zhang, Alexander O. Govorov, Tim Liedl und Na Liu

Reconfigurable 3D plasmonic metamolecules in the visible wavelength range

Nature Materials, online veröffentlicht am 6. Juli 2014; doi:10.1038/nmat4031 

Dr. Laura Na Liu | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8298124/dna_lichtschalter_nanooptik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie