Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA als Lichtschalter

10.07.2014

Eine Nanostruktur aus zwei Goldstäbchen verändert bei Zugabe definierter DNA-Moleküle reversibel ihre optischen Eigenschaften

Die Elektronik hat Konkurrenz bekommen. Information wird immer häufiger mit Licht statt Elektronen übertragen und verarbeitet. Und wie die elektronischen Bauelemente sollen ihre photonischen Pendants auf Nanoformat schrumpfen.


Als nanooptische Schalter nutzt ein Team um Forscher des Max-Planck-Instituts für Intelligente Systeme Goldnanostäbchen, die jeweils paarweise durch ein Scharnier aus DNA-Strängen miteinander verbunden sind. Die Goldstäbchen sind unter einem Transmissionselektronenmikroskop als dunkle Balken zu erkennen, die DNA erscheint als krisselige Struktur dazwischen. Beim Schaltvorgang sind die Goldstäbchen überkreuz angeordnet, bei der Untersuchung im Elektronenmikroskop heften sie sich jedoch parallel an das Trägermaterial.

© Nature Materials 2014/MPI für Intelligente Systeme


Das Prinzip des DNA-Lichtschalters: Im entspannten Zustand formen die beiden Goldstäbchen ein rechtwinkliges Kreuz (mitte). Mit dem DNA-Fragment R1 lässt sich die Blockade am DNA-Strang a lösen, der mit einem der beiden Goldstäbchen verbunden ist. Nun vereinigen sich die Stränge a und b und verformen das Kreuz zu einem Andreaskreuz mit einem Winkel, bei dem die Gold-Nanostäbchen linksdrehend polarisiertes Licht absorbieren. Das DNA-Fragment R2 bewirkt, dass sich die Stränge c und zusammenschließen, wobei ein Andreaskreuz mit einem Winkel entsteht, bei dem rechtsdrehend polarisiertes Licht absorbiert wird. Die komplementären DNA-Fragmenten R1k und R2k lösen die Fragmente a und b beziehungsweise c und d wieder voneinander – das Kreuz entspannt sich.

© Nature Materials 2014 / MPI für Intelligente Systeme

Nun haben Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, der Ludwig-Maximilian-Universität in München sowie der Ohio University in Athens, USA, einen Schalter für die Nanooptik entwickelt. Eine zentrale Rolle spielen dabei zwei Gold-Nanostäbchen.

Ändert sich der Winkel zwischen ihnen, ändern sich auch bestimmte optische Eigenschaften des Nano-Lichtschalters. Den Winkel wiederum regulieren die Forscher mit Molekülen, die in der belebten Natur Träger der Erbinformation sind: mit DNA.

Mit zwei hauchdünnen Gold-Nanostäbchen, die 10.000 Mal dünner sind als ein menschliches Haar, ist es Forschern aus Stuttgart und München gelungen, einen variierbaren Filter für sogenanntes zirkular polarisiertes Licht zu erschaffen. Entscheidend dafür, wie das System das Licht absorbiert, ist dabei der Winkel zwischen den beiden Gold-Stäbchen.

Bei zirkular polarisiertem Licht rotiert die schwingende Lichtwelle um die Achse, entlang derer sich der Lichtstrahl ausbreitet. Je nach Drehrichtung lassen sich dabei links- und rechtsdrehende Polarisierungen unterscheiden. Viele Moleküle ändern ihre Absorptionseigenschaften für derartiges Licht, wenn man ihre innere räumliche Anordnung verändert.

Der Winkel zwischen zwei Goldstäbchen steuert deren Lichtabsorption

Diesen Umstand machten sich Physiker vom Max-Planck-Institut für Intelligente Systeme in Stuttgart, vom Center for NanoScience an der Fakultät für Physik der Ludwig-Maximilian-Universität in München und von der Ohio University in Athens, USA, zunutze. Je nachdem, in welchem Winkel sich die Goldstäbchen zueinander befinden, absorbieren sie entweder bevorzugt links zirkular polarisiertes Licht oder rechtes.

Die Experten nennen dieses Verhalten Zirkulardichroismus. Bei der Absorption, die auch von der eingestrahlten Wellenlänge abhängt, kommt es zur Anregung von kollektiven Elektronenschwingungen im Metallgitter, sogenannten Plasmonen. Die Resonanzbedingungen, die für die Absorption von links- oder rechtsdrehendem Licht erfüllt sein müssen, werden dabei auch von der Anordnung der Goldstäbchen zueinander beeinflusst.

Bei der Wahl des Metalls war es für die Forscher wichtig, dass ihre Anordnung den Zirkulardichroismus im Bereich des sichtbaren Lichts zeigt. „Dies ist nur bei Gold der Fall“, erklärt Laura Na Liu, die das Projekt auf Seiten des Max-Planck-Instituts für Intelligente Systeme leitete. Es stellte sich allerdings noch die Frage, wie sich der Winkel zwischen den Stäbchen von außen kontrolliert regulieren ließ. Die Wissenschaftler benötigten eine Art flexibles Scharnier zwischen den Gold-Nanostäbchen. Einen Schalter.

Hierzu fixierten sie jeden Nanostab zunächst auf jeweils einem sogenannten DNA-Origami-Bündel. Dabei handelt es sich um mehrfach gefaltete, insgesamt länglich ausgerichtete DNA-Strukturen. „Auf der Nanoskala sind Scharniere extrem schwer zu realisieren“, sagt Laura Na Liu. „Daher liegt die Verwendung von DNA gerade nach der Einführung von DNA Origami durchaus nahe.“

DNA-Fragmente wirken wie Klettverschlüsse am Goldkreuz

Die chemische Bindung zwischen jeweils einem DNA-Bündel und einem Gold-Stäbchen bewirkt, dass diese absolut parallel zueinander verlaufen. Zwei DNA-Bündel – und damit auch zugehörigen die Goldstäbe – liegen zunächst in annähernd rechtem Winkel über Kreuz. Ganz ähnlich wie man zwei kleine Äste im Wald übereinanderlegen würde.

Der eigentliche Trick bei der Anordnung bestand nun darin, die beiden DNA-Bündel und damit die daran befestigten Gold-Stäbchen gegeneinander verdrehen zu können. Hierbei machten sich die Forscher eine besondere Eigenschaft von DNA-Molekülen zunutze. Nämlich die, dass sich zwei DNA-Ketten zu einem Doppelstrang zusammenzutun, wenn die Abfolge der Basen entlang der beiden Einzelstränge komplementär ist.

Um das zu nutzen, ließen die Forscher an ganz bestimmten Stellen ihrer Bündel-Anordnung DNA-Molekülreste mit definierter Basenabfolge herausragen. Man kann sich diese Reste wie die eine Seite eines Klettverschlusses vorstellen. Zunächst sind diese Verschlüsse noch teilweise blockiert. Doch durch Zugabe definierter DNA-Molekülfragmente lässt sich die Blockade der Klettverschlüsse aufheben – so dass sie bereit sind, sich mit dem zu ihnen passenden Gegenstück zu verbinden.

Dieses Gegenstück ließen die Forscher am jeweils anderen DNA-Bündel herausragen. Auf die Weise rückte dann das untere Ende des vertikalen Bündels, je nach Art des zugegebenen DNA-Fragments, entweder mit dem rechten oder mit dem linken Ende des horizontalen Bündels zusammen. Die Folge: In beiden Fällen wurde die Kreuzanordnung mit annähernd rechtem Winkel in eine Art Andreaskreuz mit schräg übereinander liegenden Bündeln überführt. Da damit auch die Gold-Stäbchen ihre Ausrichtung zueinander änderten, änderte sich auch ihr Absorptionsverhalten von zirkular polarisiertem Licht.

Ein Sensor für biochemische Reaktionen

„Um solch einen Schalter auch für praktische Anwendungen nutzen zu können, ist es natürlich wichtig, dass dieser Vorgang umkehrbar, also reversibel ist“, erklärt Liu. Und in der Tat gelang den Forschern auch dies: Die Zugabe eines anderen DNA-Fragments bricht die Verbindung zwischen horizontalem und vertikalem Bündel nämlich wieder auf – und stellt damit die Ausgangslage wieder her. Durch erneute Zugabe von DNA kann der Prozess erneut gestartet werden. Und so fort.

Damit haben die Physiker eine Nanostruktur geschaffen, die sich mittels DNA-Molekülen reversibel schalten lässt. Daraus ergeben sich für die Forscher eine Reihe möglicher Anwendungen – nicht nur als Schaltelement in der Nanooptik oder der photonischen Informationsverarbeitung. So können sie sich beispielsweise vorstellen, ein solches System als Nanosensor für biochemische Reaktionen einzusetzen. Würde man eine der Reaktionskomponenten an die freien DNA-Reste, also die Enden der Klettverschlüsse binden, könnte die anschließende chemische Reaktion mit einer anderen Komponente die Konformation des gesamten Systems so verändern, dass sich dies durch Messen des Absorptionsverhaltens in Echtzeit verfolgen ließe. Auch die Konstruktion sogenannter optischer Superflüssigkeiten sei denkbar, so die Forscher. Bei diesen ließe sich, quasi auf Knopfdruck, der Brechungsindex einstellen.

Ansprechpartner

Annette Stumpf

Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Telefon: +49 711 689-3089
Fax: +49 711 689-1932

 

Originalpublikation

 

Anton Kuzyk, Robert Schreiber, Hui Zhang, Alexander O. Govorov, Tim Liedl und Na Liu

Reconfigurable 3D plasmonic metamolecules in the visible wavelength range

Nature Materials, online veröffentlicht am 6. Juli 2014; doi:10.1038/nmat4031 

Dr. Laura Na Liu | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8298124/dna_lichtschalter_nanooptik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie