Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Mischung macht's: Magnetische Nanopartikel steigern Leistung von Solarzellen

25.02.2015

Magnetische Nanopartikel können die Leistung von Kunststoff-Solarzellen steigern – sofern die Mischung stimmt. Das zeigt eine Röntgenuntersuchung an DESYs Forschungslichtquelle PETRA III. Eine Beimischung der Nanopartikel von etwa einem Gewichtsprozent macht die Solarzellen effizienter, wie Forscher um Prof. Peter Müller-Buschbaum von der Technischen Universität München beobachtet haben. Sie stellen ihre Studie in einer der kommenden Ausgaben des Fachblatts „Advanced Energy Materials“ vor (online vorab veröffentlicht).

Sogenannte organische Solarzellen auf Kunststoffbasis besitzen großes Potenzial: Sie sind kostengünstig, flexibel und vielseitig einsetzbar. Ihr Nachteil gegenüber den etablierten Silizium-Solarzellen ist ihre geringere Stromausbeute.


Leichte, flexible und halbtransparente organische Solarzellen (hier auf einem Glasträger für Forschungszwecke) werden aus Lösung und bei Raumtemperatur hergestellt.

Bild: TU München


Kristalline Strukturen innerhalb einer organischen Solarzelle führen zu charakteristischen Streubildern in den Synchrotronstrahlungsexperimenten.

Bild: TU München

Typischerweise setzen sie nur wenige Prozent des einfallenden Sonnenlichts in Elektrizität um. Dennoch sind organische Solarzellen bereits an vielen Stellen wirtschaftlich, und Forscher suchen nach neuen Wegen, die Energieausbeute zu erhöhen.

Ein vielversprechender Weg ist die Beimischung von Nanopartikeln. So ließ sich zeigen, dass Gold-Nanopartikel zusätzliches Sonnenlicht absorbieren, das in der Solarzelle zusätzliche elektrische Ladungsträger erzeugt, wenn es von den Goldpartikeln wieder abgegeben wird.

Das Team um Müller-Buschbaum verfolgte einen anderen Ansatz. „Das Licht erzeugt in der Solarzelle jeweils ein Paar von Ladungsträgern, das aus einem negativ geladenen Elektron und einer Fehlstelle, einem sogenannten Loch, mit positiver Ladung besteht“, erläutert der Hauptautor der aktuellen Studie, Daniel Moseguí González aus der Gruppe von Müller-Buschbaum.

„Die Kunst einer organischen Solarzelle ist, diese Elektron-Loch-Paare zu trennen, bevor sie sich wieder vereinen können. Denn dann wäre die zuvor erzeugte Ladung wieder verloren. Wir haben einen Weg gesucht, die Lebensdauer der Elektron-Loch-Paare zu verlängern, so dass mehr von ihnen getrennt und zu unterschiedlichen Elektroden geführt werden können.“

Bei dieser Taktik kommt die Quantenphysik ins Spiel: Sie besagt, dass Elementarteilchen wie das Elektron eine Art Eigendrehung besitzen, den sogenannten Spin. Dieser Spin hat nach den Regeln der Quantenphysik den Wert 1/2. Auch das positiv geladene Loch hat einen Spin von 1/2. Diese beiden Spins können sich entweder addieren, wenn sie gleich gerichtet sind, oder subtrahieren, wenn sie entgegengesetzt gerichtet sind. Das Elektron-Loch-Paar kann also einen Gesamtspin von 0 oder 1 besitzen. Paare mit einem Spin von 1 existieren länger als solche mit einem Gesamtspin 0.

Die Forscher suchten nun ein Material, das in der Lage ist, den Spin-0-Zustand in einen Spin-1-Zustand umzuwandeln. Dazu sind Nanopartikel aus schweren Elementen nötig, durch die der Spin eines Elektrons oder eines Lochs umgeklappt wird, so dass beide Spins des Paars gleich gerichtet sind. Tatsächlich kann Magnetit (Fe3O4) dies leisten. „Die Beimischung von Magnetit-Nanopartikeln erhöhte den Wirkungsgrad der Solarzellen in unserem Versuch um bis zu 11 Prozent“, berichtet Moseguí González. Die Lebensdauer der Elektron-Loch-Paare wird signifikant erhöht.

Die Beimischung von Nanopartikeln ist dabei eine Routinetechnik, die sich in den verschiedenen Produktionsverfahren von organischen Solarzellen problemlos anwenden lässt. Wichtig ist jedoch, dass nicht zu viele Nanopartikel in die Solarzelle gemischt werden. Denn organische Solarzellen besitzen eine sorgfältig abgestimmte innere Struktur, bei der die lichtsammelnden aktiven Materialien mit optimalen Längenskalen gemischt sind, um die Ladungsträger-Paare möglichst effizient zu trennen. Diese Strukturen liegen im Bereich von 10 bis 100 Nanometern.

„Werden sehr viele Nanopartikel in das Material der Solarzelle gemischt, verändert sich die Struktur des Materials, wie die Röntgenuntersuchung gezeigt hat“, erläutert Ko-Autor Dr. Stephan Roth, Leiter der DESY-Messstation P03 an PETRA III, an der die Versuche stattfanden. „Die untersuchte Solarzelle kann eine Dotierung mit Magnetit-Nanopartikeln von bis zu einem Gewichtsprozent verkraften, ohne dass sich die Struktur ändert.“

Den größten Effekt beobachteten die Wissenschaftler bei einer Dotierung mit 0,6 Gewichtsprozent Nanopartikeln. Die Effizienz der untersuchten Kunststoffsolarzelle stieg dabei von 3,05 Prozent auf 3,37 Prozent. „11 Prozent zusätzliche Energieausbeute können durchaus über die Wirtschaftlichkeit einer Anwendung entscheiden“, betont Forschungsleiter Müller-Buschbaum.

Die Forscher erwarten, dass sich auch die Leistung anderer Kunststoff-Solarzellen durch die Dotierung mit Nanopartikeln weiter steigern lässt. „Die Kombination von leistungsfähigen Polymeren mit Nanopartikeln lässt also für die Zukunft noch weitere Steigerungen der Effizienzen von organischen Solarzellen erwarten. Ohne eine detaillierte Untersuchung, wie zum Beispiel mit Röntgenstrahlung eines Synchrotrons, ist ein grundlegendes Verständnis der zugrunde liegenden Prozesse aber nicht zu erlangen“, summiert Müller-Buschbaum.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung:
„Improved Power Conversion Efficiency of P3HT:PCBM Organic Solar Cells by Strong Spin–Orbit Coupling-Induced Delayed Fluorescence“; Daniel Moseguí González, Volker Körstgens, Yuan Yao, Lin Song, Gonzalo Santoro, Stephan V. Roth und Peter Müller-Buschbaum; „Advanced Energy Materials“, 2015; DOI: 10.1002/aenm.201401770

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=731&... - Pressemitteilung im Web
http://dx.doi.org/10.1002/aenm.201401770 - Originalstudie (Online-Vorabveröffentlichung)

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie

Ostfalia forscht an Ultraleichtflugzeug mit Elektroantrieb

19.10.2017 | Verkehr Logistik

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungsnachrichten