Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Mischung macht's: Magnetische Nanopartikel steigern Leistung von Solarzellen

25.02.2015

Magnetische Nanopartikel können die Leistung von Kunststoff-Solarzellen steigern – sofern die Mischung stimmt. Das zeigt eine Röntgenuntersuchung an DESYs Forschungslichtquelle PETRA III. Eine Beimischung der Nanopartikel von etwa einem Gewichtsprozent macht die Solarzellen effizienter, wie Forscher um Prof. Peter Müller-Buschbaum von der Technischen Universität München beobachtet haben. Sie stellen ihre Studie in einer der kommenden Ausgaben des Fachblatts „Advanced Energy Materials“ vor (online vorab veröffentlicht).

Sogenannte organische Solarzellen auf Kunststoffbasis besitzen großes Potenzial: Sie sind kostengünstig, flexibel und vielseitig einsetzbar. Ihr Nachteil gegenüber den etablierten Silizium-Solarzellen ist ihre geringere Stromausbeute.


Leichte, flexible und halbtransparente organische Solarzellen (hier auf einem Glasträger für Forschungszwecke) werden aus Lösung und bei Raumtemperatur hergestellt.

Bild: TU München


Kristalline Strukturen innerhalb einer organischen Solarzelle führen zu charakteristischen Streubildern in den Synchrotronstrahlungsexperimenten.

Bild: TU München

Typischerweise setzen sie nur wenige Prozent des einfallenden Sonnenlichts in Elektrizität um. Dennoch sind organische Solarzellen bereits an vielen Stellen wirtschaftlich, und Forscher suchen nach neuen Wegen, die Energieausbeute zu erhöhen.

Ein vielversprechender Weg ist die Beimischung von Nanopartikeln. So ließ sich zeigen, dass Gold-Nanopartikel zusätzliches Sonnenlicht absorbieren, das in der Solarzelle zusätzliche elektrische Ladungsträger erzeugt, wenn es von den Goldpartikeln wieder abgegeben wird.

Das Team um Müller-Buschbaum verfolgte einen anderen Ansatz. „Das Licht erzeugt in der Solarzelle jeweils ein Paar von Ladungsträgern, das aus einem negativ geladenen Elektron und einer Fehlstelle, einem sogenannten Loch, mit positiver Ladung besteht“, erläutert der Hauptautor der aktuellen Studie, Daniel Moseguí González aus der Gruppe von Müller-Buschbaum.

„Die Kunst einer organischen Solarzelle ist, diese Elektron-Loch-Paare zu trennen, bevor sie sich wieder vereinen können. Denn dann wäre die zuvor erzeugte Ladung wieder verloren. Wir haben einen Weg gesucht, die Lebensdauer der Elektron-Loch-Paare zu verlängern, so dass mehr von ihnen getrennt und zu unterschiedlichen Elektroden geführt werden können.“

Bei dieser Taktik kommt die Quantenphysik ins Spiel: Sie besagt, dass Elementarteilchen wie das Elektron eine Art Eigendrehung besitzen, den sogenannten Spin. Dieser Spin hat nach den Regeln der Quantenphysik den Wert 1/2. Auch das positiv geladene Loch hat einen Spin von 1/2. Diese beiden Spins können sich entweder addieren, wenn sie gleich gerichtet sind, oder subtrahieren, wenn sie entgegengesetzt gerichtet sind. Das Elektron-Loch-Paar kann also einen Gesamtspin von 0 oder 1 besitzen. Paare mit einem Spin von 1 existieren länger als solche mit einem Gesamtspin 0.

Die Forscher suchten nun ein Material, das in der Lage ist, den Spin-0-Zustand in einen Spin-1-Zustand umzuwandeln. Dazu sind Nanopartikel aus schweren Elementen nötig, durch die der Spin eines Elektrons oder eines Lochs umgeklappt wird, so dass beide Spins des Paars gleich gerichtet sind. Tatsächlich kann Magnetit (Fe3O4) dies leisten. „Die Beimischung von Magnetit-Nanopartikeln erhöhte den Wirkungsgrad der Solarzellen in unserem Versuch um bis zu 11 Prozent“, berichtet Moseguí González. Die Lebensdauer der Elektron-Loch-Paare wird signifikant erhöht.

Die Beimischung von Nanopartikeln ist dabei eine Routinetechnik, die sich in den verschiedenen Produktionsverfahren von organischen Solarzellen problemlos anwenden lässt. Wichtig ist jedoch, dass nicht zu viele Nanopartikel in die Solarzelle gemischt werden. Denn organische Solarzellen besitzen eine sorgfältig abgestimmte innere Struktur, bei der die lichtsammelnden aktiven Materialien mit optimalen Längenskalen gemischt sind, um die Ladungsträger-Paare möglichst effizient zu trennen. Diese Strukturen liegen im Bereich von 10 bis 100 Nanometern.

„Werden sehr viele Nanopartikel in das Material der Solarzelle gemischt, verändert sich die Struktur des Materials, wie die Röntgenuntersuchung gezeigt hat“, erläutert Ko-Autor Dr. Stephan Roth, Leiter der DESY-Messstation P03 an PETRA III, an der die Versuche stattfanden. „Die untersuchte Solarzelle kann eine Dotierung mit Magnetit-Nanopartikeln von bis zu einem Gewichtsprozent verkraften, ohne dass sich die Struktur ändert.“

Den größten Effekt beobachteten die Wissenschaftler bei einer Dotierung mit 0,6 Gewichtsprozent Nanopartikeln. Die Effizienz der untersuchten Kunststoffsolarzelle stieg dabei von 3,05 Prozent auf 3,37 Prozent. „11 Prozent zusätzliche Energieausbeute können durchaus über die Wirtschaftlichkeit einer Anwendung entscheiden“, betont Forschungsleiter Müller-Buschbaum.

Die Forscher erwarten, dass sich auch die Leistung anderer Kunststoff-Solarzellen durch die Dotierung mit Nanopartikeln weiter steigern lässt. „Die Kombination von leistungsfähigen Polymeren mit Nanopartikeln lässt also für die Zukunft noch weitere Steigerungen der Effizienzen von organischen Solarzellen erwarten. Ohne eine detaillierte Untersuchung, wie zum Beispiel mit Röntgenstrahlung eines Synchrotrons, ist ein grundlegendes Verständnis der zugrunde liegenden Prozesse aber nicht zu erlangen“, summiert Müller-Buschbaum.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung:
„Improved Power Conversion Efficiency of P3HT:PCBM Organic Solar Cells by Strong Spin–Orbit Coupling-Induced Delayed Fluorescence“; Daniel Moseguí González, Volker Körstgens, Yuan Yao, Lin Song, Gonzalo Santoro, Stephan V. Roth und Peter Müller-Buschbaum; „Advanced Energy Materials“, 2015; DOI: 10.1002/aenm.201401770

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=731&... - Pressemitteilung im Web
http://dx.doi.org/10.1002/aenm.201401770 - Originalstudie (Online-Vorabveröffentlichung)

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics